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Preface

Preface:

audience

objective

practice??

brief outline.

Objective

One goal of this book is to create a cohesive methodology that respects the real-

ities of the experimental medium of economics, and provides a clear justification

++Explain in Detail what is justification++ for making inferences. We do

not need another statistical cookbook. This is an attempt at the why and how of

statistics; providing a basic understanding of what you are doing. What are the

practices, and what you can reliably infer from the data.

Present statistical analysis and statistical thinking, that is useful to experimental

economists.

Present research design.

1. Construct research hypothesis.

2. Treatment design to address research hypothesis.

3. Experimental design for efficient collection of data.

Orientation and Background

I presume an understanding of basic statistics and a familiarity with experimental

economics. Fundamental understanding of statistical thinking. Presume college

xiii
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algebra, matrices, and basic calculus is helpful. Basic probability and statistical

testing.

The text intends to be both a textbook for students and a reference book of for

practitioners.

Statistical fundamentals and randomized experiments are the topic of Part I. In

randomized experiments the units of observation are randomly assigned to treat-

ments. In part Part II I expand to include one-sample and individual behavior

experiments.

Examples

Many of the examples are based on research studies; names withheld to protect the

innocent.

All the examples have been computed with R (Team, 2013). I used Knitr (Xie,

2013) to embed the R code in the LATEX (Lamport, 1994) source. The embedding

creates a dynamic document of reproducible research.

Mark Olson

Nowhere, XE

October 2012

http://www.r-project.org
http://yihui.name/knitr
http://ctan.org
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1 Introduction

Sir, I have found you an

argument, but I am not obliged

to find you an understanding.

Samuel Johnson

1.1 Why a Special Book?

M
ost economic experimental analysis is an ad-hoc combination of methods and

ideas, there is no consensus on the criteria for good statistical design and

analysis.

The observations from economic experiments are usually not normally distributed.

The data can be bi-modal, which breaks the assumptions of many tests or the tests

are not robust. Instances of bi-modal distributions can occur when observations

are clustered, for example, in a market experiment efficiency measurements may

cluster at 100 percent or at the no trade outcome. Dictator type games may cluster

at no contribution or full contribution. Additionally, the distribution of data may

be lumpy, for example, in an auction experiment with a second highest allocation

efficiency of 93 percent, a significant difference between treatments with 98 percent

and 94 percent efficiency may not have practical significance.

The data from repeat trials usually exhibits a high degree of association among

the data (I reserve the term correlation to mean linear correlation) from repeated

trials.

2



CHAPTER 1. INTRODUCTION 3

Most experimental design books are aimed at the physical sciences or clinical

trials. The emphasis of experimental design for the physical sciences is RSM. Re-

sponse surface methodology was initially developed for determining optimal condi-

tions in the chemical industry. Now it is used in physical, engineering, and biological

sciences. Myers (R. H. Myers, 1990) has a broad review of Response Surface Method-

ology (RSM). Other references for response feature analysis are Wishart (1938) and

Matthews et al. (1990).

Agriculture is another discipline that has a strong influence on the experimental

design textbooks. ++Find ref Agriculture design.++ Hence, many methods

and procedures, are more relevant to those disciplines (e.g., Latin squares) than

to experimental economics; so that the typical textbooks have topics that are not

relevant to experimental economics.

I hope to provide methods that are applicable in practice; where practice is

the sample sizes, distributions and structure that are common in an economic ex-

periment. From Burnham and Anderson (Burnham and Anderson, 1998, page 5):

“Part of applicability means that the methods have good operating characteristics

for realistic sample size”. Locate in one place, accessible to experimental economists,

current statistical thinking on testing and design; to illuminate fads and fallacies

++Explain See Wang 1993, page 2++ , and statistical significance vs. practical

significance. ++Find ref Check Burnham and Anderson page 5.++

I aim to present (provide) a coherent paradigm for the analysis, create a hand-

book for the practicing experimental economist, and provide a consistent strategy

for the design and analysis of an Experimental Economics (EE). In this book I will

be considering a specific type of experiment, a randomized controlled experiment.

1.2 Partial Outline

• Fitting experimental economics into general research.

• Explain the what and why of economic experiments.

• Basic sources of extraneous variation.

• Benefits and disadvantages of experiments.

• The unique aspects of economic experiments.

• Different approaches to the analysis of experimental data. The difference

between analysis of experiments and the economists view of econometrics.

• Describe the basis for inference and the criteria necessary for inference to be

valid.
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• Describe some statistical tests and the assumptions behind them.

• Common errors in hypothesis testing: one-sided tests and multiple compar-

isons.

• Randomization as a basis for inference.

• The fallacy of nonparametric tests as no assumption tests.

• The situations where tests are valid.

• Practical steps in designing, running and presenting the results of experiments.

• How to make presentations, and “the curse of power point”.

• Myths and fallacies of experimental economics, as practiced and applied. How

to counter critiques of reviewers.

The word statistics derives from the collection and use of data to assist

in the administration of a state (nation). The justice system is one of the

fundamental pillars of a state, and is central to the political life of most

countries. Ideas from probability and statistics have been used to try to

model and improve methods of legal decision-making since the earliest

days of our discipline [law] in the 16th and 17th centuries. (Balding and

Gastwirth, 2003).

++todo Put intro and preface together.++



2 The Tao of Research

Empirical tests of theories

depend crucially on the

methodological decisions

researchers make in designing

and implementing the test.

Duhem 1953; Quine 1953

2.1 The Problem of Scientific Inference

Basis of Science

A
basic element of science is observation (see Hinkelmann and Kempthorne,

1994) which can be certain or uncertain. An observation is certain if for every

replication the observation is the same. Every time we catorgorize an oranges color

it is orange. If an observation is uncertain it may be different for every replication.1

Observation allows us to make empirical generalizations or simple laws.

Empirical Design

The importance of economic experiments to answering a research question depends

on the methodologies available to the researcher. These methodologies are the basis

1Could relate these to descriptive science and theory development science (theory organizes all
of the known facts).

5



CHAPTER 2. THE TAO OF RESEARCH 6

of empirical design (Royall, 1997). ++todo What is emp des?++ Kish (Kish,

1987, page 20) lists three major types of empirical design: experiment, survey sam-

ples, and observational studies.2 Each with differences in application and interpre-

tation. ++todo How should include field experiments.++

Not all research methodologies are empirical, some examples of research method-

ologies used in economics are

• Historical precedents, look for past situations that are similar to the current

environment and try to devise insights or generalities.

• Case studies, the same as historical precedents, except that they are usually

more recent; where historical precedents may go back hundreds, if not, thou-

sands of years.

• Apply or develop a theory or mathematical model. This could also include

computer simulations.

• Econometric analysis, this is the application of statistical methods structured

(or tempered) by an economic model to historical observations. ++Insert

ref For econometrics.++

• Use a survey to obtain information about the current problem environment;

compare current surveys with past.

• Analysis of observational data not mentioned above.

• ad-hoc arguments, that is, arguments proffered by lawyers, politicians, lobby-

ists, or any other uninformed individual or individual with an agenda.

To make relevant inferences a choice of one of the three basic methodologies is

a compromise between

• Observational studies provide the most realism,

• Experiments allow randomization (for scientific reliability) and manipula-

tion (the assignment of experimental units to treatments), and

• Representativeness is provided by survey samples.

Realism adds complexity, ++Explain realism, representativeness++ which

makes it difficult to find a single cause for differences in our observations, and

2This list does not cover all possibilities but it is enough for our discussion.
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requires many more observations for the same reliability and accuracy. Represen-

tativeness is expensive, and depending on the methodology randomization can be

easy or impossible.

Example Place Holder

Give examples of trade offs of different methodologies.

Four classes of variables in empirical design:

• (E) Explanatory (experimental, predictor, treatment): embodies the aims of

research design, measures relationship with response/predictor, designated on

basis of prior knowledge, theory.

• (C) Controlled variable: design or statistical techniques of selection proce-

dures.

• (D) Disturbing variable (bias): uncontrolled and may be confounded with

explanatory (E).

• (R) Randomized variables, random errors.

Disturbing (also called spurious, nuisance and confounding) and randomized vari-

ables are extraneous sources of variation, which we want to separate from explana-

tory variables. Is nuisance the same as disturbing. ++todo Nuisance.++

The design goal is:

• to reduce random errors (R) and bias effects (D),

• to separate explanatory from extraneous,

• place into Class C as much extraneous variables as practical,

• Randomization places class D into class R.

Despite their differences all methodologies of empirical science try to solve the

same basic problems: How to make inferences to larger populations, and How

to make inferences to causal systems, from a limited sample of observations

subject to errors and random fluctuations (Kish, 1987, page 1).

From Law to Theory

How do we take our observations and make them theory; how do we take our observa-

tions and infer a theory? The philosopher of science Charles S. Peirce (Hinkelmann

and Kempthorne, 1994, page 8) (also see Gallie, 1996) describes three types of

inference: deduction, induction, and hypothesis.
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2.2 Deduction

The use of statistics and experimental practice is a deductive process. It consists

of a set of logical activities, sampling, randomization, calculation of statistics that

allows us to step from treatment assignment to causal inferences. The deductive

steps are important because causality requires time ordered activities.

The scientific method of Francis Bacon prescribed the method of deduction to

answer scientific questions as: “Having first determined the question according to

his will, man then resorts to experience, and bending her to conformity with his

placets, leads her about like a captive in a procession..” (Francis Bacon, Novum

Organum, 1620),

Remark 2-1

While it is generally thought that modern scientific method was estab-

lished in the early 17th Century by Francis Bacon and Rene Descartes,

it has been suggested that it was first practiced by al-Hassan Ibn al-

Haytham. Born in AD 965 in what is now Iraq he is the first known

person to place an emphasis on experimental data and reproducibility

of results. ++Insert ref source++ �

2.3 Induction

Locke, 1700, Berkeley 1710, and Hume 1748 all addressed the problems of scientific

inference (Locke, 1700; Berkeley, 1710; Hume, 1748). Hume’s“uniformity of nature”,

treatise on human nature. P. I. Good and James W. Hardin (See 2009, page 100)

for references, See Hand (Hand, 1994) and ++todo Get References++ Pop-

per (Popper, 2002). Also get these references J. O. Berger (2003) Sterne and G. D.

Smith (2001), and salmon.1967 Burks77 Ronald A. Fisher (1925), Neyman34

As discussed in Kish (1987) Popper introduced falsifiability and demarcation as

a solution to the problem of induction. No number of observations can logically lead

us to the conclusion that “all swans are white” but a single non-white swan can lead

us to the logical conclusion that “not all swans are white”. Magee (magee.1973 )

remarks “In this important logical sense [. . .] to refute them..” ( Kish (1987, pages

243 and 213) )

Fisher’s (Ronald A. Fisher, 1935a) ideas on multifactor experiment designs are

similar to Popper’s “Fisher was fighting against the current views of induction as

was Popper..” ((page 245 Kish, 1987)). See also Platt’s (platt.1964 ) concept of

strong inference. ++todo Is Platt strong inference?++ Fisher’s expanded

his ideas with experimental multifactor design (see G. E. P. Box, W. G. Hunter,
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and J. S. Hunter, 1978, chapter 15). His statistical ideas have a strong relation to

testing for falsifiability.

For example, can we confirm that the prices from an English auction are less

than the prices from a first price auction? No. We can falsify by observing a price

from an English auction greater than the prices from first price auctions.

Statements that have high informative content have low probability (Kish, 1987,

top page 244); statements that are highly falsifiable are highly testable. By defini-

tion (of a statistical problem) there is chance, randomness, or error.

Popper’s (Popper, 2002) ideas become complicated when certainty disappears.

Magee (magee.1973 ), has an introduction; Salmon (salmon.1967 ) has a techni-

cal representation.

Using Popper’s falsification method, confirmation is approached to the degrees

that the
(

yai − ybi
)

resemble the
(

ya − yb
)

under the severest testing? Subclasses

can be treatment. ++todo kish page 103.++

2.4 Causality

CASUAL inferences are made from observational studies and randomized ex-

periments (see D. A. Freedman, 2009). Freedman statistical models ++todo

see freedman stat mod++ . In any empirical study association may be observed,

but association is not causation.

Causal inferences are strongest when based on randomized controlled experi-

ments. Random assignment of treatment to subjects balances the treatment groups,

up to random error ++todo more on this++ . Differences in treatment are then

attributable to the treatment, providing a deductive basis for causal inference. In ob-

servational studies subjects assign themselves to the different groups. Confounding

is the main problem when using observational studies to make inferences.

Causality also requires time, one thing causes another (not to be confused with

one thing follows another). For us that means that treatments are assigned before

the observations are made; the usual course in an economic experiment.

Example Place Holder

Example of assigning treatment after the observations.

Is this even possible?

Three treatments easy, average, and hard in difficulty

(as determined by the experimenter). Observed easy was

hard and hard was easy by some metric.
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2.5 Confounding

Confounding is the difference between the treatment and control which affects the re-

sponse. A confounder is a variable associated with both the treatment and response.

For a smoking example D. A. Freedman (see 2009, page 2).

John Stuart Mill made the contrast between experiment and observation; he

also realized confounding. (seventh edition Book III, Chapters VII and X, pages

421 and 503 emphasis.)

Randomized controlled experiments minimize the confounding, if the random-

ization is properly applied.

See David Freedman’s 1999 (D. A. Freedman, 1999) article. For additional

articles on misleading surrogate variables and spurious associations P. I. Good and

James W. Hardin (see 2009, page 192) also D. B. Rubin (see 1978).

Ionnadis (2005) (ionnadis2005 ), Kunz and Oxman (1998) (kunz1998 ) show

that observational studies are less likely to give results that can be replicated than

experiments.

2.6 Randomization

Charles S. Peirce Maxwell and Delany (2004, page 37) first discussed the advantages

of randomization see Stigler Stigler (1986, page 192). Fisher (Ronald A. Fisher,

1935a, page 34) tied ++todo Correct Fisher quote. check if stigler book

correct++ these two methods arriving at probabilistic inference.

Peirce Peirce, 1878 emphasized randomization in “Illustrations of the Logic of

Science” 1877–1878 and Peirce (Peirce, 1883), “A theory of probable inference”.

Jerzy Neyman (Neyman, 1923) advanced randomization’s in experiments (1923).

Box provides a discussion of randomization of treatments or experimental units

see George E. P. Box (1989).

The random assignment of treatments to experimental units distinguishes a

rigorous true experiment from a less-than-rigorous quasi-experiment (Creswell,

2008).

“The purpose of randomization is to guarantee the validity of the test of signifi-

cance, this test being based on and estimate of error made possible by replication..”

(Ronald A. Fisher (1935a, chapter 26)) ++todo From Kish page 207.++

Later address randomization in economic experiments. ++todo Later ad-

dress randomization in economic experiments.++

Human judgment results in bias, randomization is objective and impartial; as the

sample size increases groups become more alike. To test the effect of a treatment,

treatment groups should be as similar as possible (David Freedman, Pisani, and

Purves, 2007, page 4). If groups differ with respect to some factor other than
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treatment, the effect of this other factor might be confounded with the treatment

effect. Confounding is a major source of bias.

Randomization:

• Allows statements of causality.

• helps ensure homogeneity of variability.

• Can eliminate (unconscious) biases.

There are many reasons to randomize in an experiment, it is multifunctional. Ex-

amples are:

• To remove alternative explanation.

Example Place Holder

ESP non-validation:

\blockquote[{\citet[][page 563]{freedmanpisani2007}}][.]

{participants did not get into it}.

++todo Find ESP Example.++

• Bias reduction removal.

Example Place Holder

prayer experiments - prayer as cure (refer to Skeptical inquirer).

++Insert ref Prayer.++

• Confounding.



CHAPTER 2. THE TAO OF RESEARCH 12

Example 2-1

Initial Salk vaccine design (parents had to consent to vaccine in

Freedman), The Salk vaccine initial design, likely lower income

implied vaccine to consenting parents; likely higher income imply

control (no vaccine) non-consenting parents.

If groups differ with respect to some factor other than treatment,

the effect of this other factor might be confounded with the treat-

ment effect. �

• Remove experiment factor.

Example Place Holder

Pavlov learning rats.

++Insert ref Pavlov Rats.++

Parallelism

Where external validity is via induction and great leaps; and to study simple cases

for understanding of the more complex.

Some more; ++todo More here++ .

Randomization for valid inference

Randomization is the random assignment of treatment to experimental units. Fisher (Ronald

A. Fisher, 1926): randomization provides valid estimates experimental error vari-

ance for statistical inference methods of estimation and tests of significance. ++todo

Check from paper.++

Independence cannot be justified when a relation exists between experimental

units; even when the relation is only proximity.

Fisher (Ronald A. Fisher, 1935a) shows randomization provides appropriate

reference populations for statistics free of any assumptions about the distribution

of observations.

Normal theory provides approximations. Normal theory models provide simplic-

ity but can only be justified under the randomization umbrella.

The random assignment of treatments to experimental units simulates the effect

of independence and permits us to proceed as if the observations are independent
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and normally distributed. That is independence between the experimental units;

does not apply to repeated observations taken on an experimental unit.

Further justifications

• Cochran and Cox, 1957 (William G. Cochran and Cox, 1957);

• Greenburgh 1951 (Greenburg, 1951)

• Ostle and Mensing 1975 (Ostle and Mensing, 1975).

Rigorous treatment

• Kempthorne 1952 (Kempthorne, 1952), Design and Analysis of Experiments

• Scheffé (Scheffé, 1959)

• R. Mead 1988, (Mead, 1988) Design of experiments, statistical principles.

• Hinkelmann 1994 Hinkelmann and Kempthorne (Hinkelmann and Kempthorne,

1994) .

• Kempthorne 1966 Some aspects JASA 61, 11–34 (Kempthorne, 1966)

• Kempthorne 1975 Inference, In Survey of Statistical Design and Linear Models,

ed J.N. Srivastava, 303–331. (Kempthorne, 1975).

Restricted Randomization

Given three treatments A, B, and C; if the sequence of treatments is randomized

then AAA, BBB, . . . , are all possible outcomes. These sequences may lead to bias.

Example Place Holder

Give dictator example ABCD,ACBD.

See Hurlbert, 1984; Yates, 1948; Youden, 1956; Bailey, 1986; Youden, 1972;

Baily, 1987,
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Experiments

Of all the methodologies, experimental methods are best adapted to answer ques-

tions of causal inference. Econometrics requires stronger assumptions, imposing a

structural model on the data to make causal inference. Experimental methods also

impose a structural model, but it is generally (but not always) a probability model

that stems from randomization.

The problem for the statistician is how to tell if the observed difference among

treatments represents a true treatment effect or represents a difference among sub-

jects.

Ronald A. Fisher has had the largest influence on statistical design. He formed

the basic principles necessary for a valid research result. In 1926, Fisher (Ronald A.

Fisher, 1926) listed three basic principles (Kuehl, 2000, see):

Local control to reduce experimental error.

Replication to estimate experimental variance.

Randomization for valid estimation of experimental error variance.

see §6.3.

Fisher Ronald A. Fisher, 1925 ++todo check correct title and correct

editions, at least 13++ . Or is it Principles Research Workers, Experience of

Rothamstad Experimental Station, agricultural research. Fisher Ronald A. Fisher,

1935a ++todo check citing with at least seven editions.++

Experiment Definition

From Kuehl (Kuehl, 2000, page) an experiment is an investigation that establishes

a set of circumstances under a specific protocol to observe and evaluate implications

of resulting observations.

Comparative Experiment: one or more set of circumstances in the experiment,

the results compared.

Treatments: Sets of Circumstances.

Experimental or observational unit: A physical entity or subject (e.g., student

subject or a group of student subjects) exposed to the treatment independent of the

other units.

Example Place Holder

If we are studying if there is a difference in auction types such

as the English and Dutch auctions, then the treatment is the type of

auction. We have groups of students randomly assigned an

auction type, so the experimental units for our experiment are the
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groups of students.

Note: the experimental unit is not the individual student because the

student is assigned the same treatment as the other students in the

group!

Factor is a group of treatments, levels are the categories of the factor.

Example Place Holder

Temperature and auction type are factors. 20, 30, 40 degrees are

levels of the factor temperature; Dutch, English, and clock are

levels of the factor auction type.

If there is more then one factor applied to a treatment the experiment is called

a multifactor experiment.

Example Place Holder

Factor A with levels a1, a2, and a3; factor B with levels b1 and b2.

If the design applies all combinations of factor levels.

We can visualize the combination of factor levels that are applied to

experimental units.

| a1 | a2 | a3

b1 | a1b1 |

b2 | a2b2

The factor combination a2b2 is a treatment.

A factorial arrangement : all possible combinations of factors, treatment applied to

experimental units.

Experimental Error

Experimental error is the variation among identically and independently treated

experimental units, which include:

• Variation among units.

• Variability in measuring response.
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• Inability to reproduce treatment conditions exactly.

• Interaction of treatments and experimental units.

Reducing experimental error

Kuehl Kuehl, 2000

Technique, measurements, media (instructions etc.), protocols; variation or sloppy

incurs experiment error.

Select uniform experimental units,

Blocking to reduce experimental error variance.

Blocking

Blocking is the arrangement of similar experimental units into groups or blocks.

Blocking reduces experimental error.

Fisher’s valid estimate of error

Fisher 1926, two things necessary for valid estimate of error.

Distinguish error which can eliminate and not eliminate.

Use statistical estimator of error that considers the experimental design.

Example Place Holder

For instance if block with male females,

original variance = sigma ( sum males + sum females )

blocked variance = sigma (sum males ) + sigma (sum females)

Experiment Design

The arrangement of experimental units to control experimental error and accom-

modate the treatment design. Completely randomized design, blocking criteria,

covariate for control variation.

Example Place Holder

Expand blocking variance example.

Demonstrate variance reduction by blocking.

Auction blocking, each treatment has same values

for a period.
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Replication

Measurement of observations are variable and uncertain. Replication (observations

of different experimental units) and repeated measurements (observations of the

same experimental unit), decrease the variance of treatment effects, increase preci-

sion, strengthen reliability and validity. This is different than a reproduction of the

entire experiment, in a new location and by a different researcher. Replication is

necessary for valid experimental results.

Galileo may have needed only one drop of one and ten pound balls to demon-

strate. But needed more to make sure not an aberration. This was an experiment

with little variation. ++todo Check on this story.++

Replication

• Demonstrates results are reproducible.

• Insurance against aberrant results.

• Provides estimate of experimental error.

• Increases precision of estimates (for treatment means.) Increase replications

r, decreases s
2
y which increases the precision of y the treatment mean. As-

sumes the conditions of the clt Central Limit Theorem hold (or law of large

numbers).

Number of replications r, depends on the variance, size of difference want to

detect (η), α, β (or the power of the test) see Chapter 8.15 for more detail.

Variation

Why do we need statistics? We want the measurement of individual units does

not mask ++todo define mask++ the variation from the differences of the

treatments.

There are two sorts of variation, variation within an experimental unit and

variation among experimental units. For example, blood pressure varies hour to

hour and day to day, there can be little or no control for this type of variation.

There can be even less control of the variation between subjects (P. I. Good, 2006,

page 27).

Three basic sources of extraneous variation.

Control

Statistical control can be described three ways (see D. A. Freedman, 2009, page 2).

1. A control is a subject who did not get the treatment.
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2. A controlled experiment is a study where the investigators decide who will be

in the treatment groups.

3. Control is the is the ability of the experimenter to set the value of a variable.

The experimental economics literature has emphasized experimental control as

an important benefit of experimental methodology, but has almost completely ig-

nored the benefits of randomization. Randomization is perhaps more important,

since it is necessary for causal inference. Randomization implies control, but con-

trol does not imply randomization. ++todo [++ fancyline]Confirm with Kish

others? Statisticians define control differently than experimental economists.

Manipulation and Randomization

Experiments allow us to make causal claims through the manipulation of treat-

ments (see Wang, 1993, page 49) and (Paul W. Holland, 1986). Statistical manipu-

lation means (or does it imply or infer) randomization of treatments to experimental

units (subjects or groups of subjects).

Randomization and homogeneity

One purpose of randomization is to achieve homogeneity (the distribution of possi-

ble types is the same for each treatment) in treatment groups. Causality requires

that treatments are applied to units that are as alike as possible. Randomization in-

creases the homogeneity in the sample units (Wang, 1993, page 52). Individual units

may be different, you want the distribution of subjects assigned to each treatment

to be as alike as possible.

Remark 2-2

In the second world war a group was studying planes returning from

bombing Germany. They drew a rough diagram showing where bullet

holes were and recommended those areas be reinforced. Statistician

Abraham Wald (1980), pointed out that essential data were missing

from the sample they were studying: What about the planes that did

not return from Germany?

Bullet holes in a plane are likely to be at random. There were two

areas of the returning planes that had almost no bullet holes (wings and

tail join the fuselage).

What areas should be reinforced? �



3 What is an Experiment

That’s not an experiment you

have there that’s an experience.

Fisher

M
anydifferent scientific undertakings are described as experiments. Experiments

such as Galileo’s ++Find ref get spell and source Galileo++ gravity

experiments and the Salk polio vaccine experiments, testing the efficacy of a new

drug, comparing the tensile strength of different alloys. There have also been exper-

iments testing for the effectiveness of prayer and ESP. ++Find ref Prayer, ESP

others.++ According to

Experiment can also mean a course of action tentatively adopted without

being sure of the eventual outcome: the United States is an experiment

in representative democracy, or trying out new ways of doing things: the

cook experimented with different types of flour, (dictionary).

The many types of activities that are classified as experiments make it diffi-

cult to construct a single effective definition. The most important aspect of an

experiment is that it can be replicated or reproduced. ++todo Which word

should I use?++ Reproducibility defines an experiment; reproducibility makes

an experiment different from an experience.

Besides replication an addtional requirement is randomization.

Why use experiments over other empirical or evidence based method? Exper-

iments are used to ask questions just as other methods. We are asking what is

19
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the statistical evidence in support of our hypothesis (see Royall, 1997). As De-

lany describes experiments “derives value from the contributions they make to the

more general enterprise of science [. . .] and the essence SSC is to discover the ef-

fects of presumed causes.” (Maxwell and Delany (2004, page 3)). ++todo Fix

Quote.++

In the most basic comparative experiment we observe the response of treatments

on experimental units1

An experiment requires statistical manipulation implies randomization,No Cau-

sation without Manipulation Wang (see 1993, pages 49–4) and Paul W. Holland

(1986). ++todo Check wang pages and siedler content.++

Randomization

Randomization of experimental units over treatments is a strategy for eliminating

biases (in an expected sense). For the best comparison, units should be as much

alike as possible, randomization is to achieve homogeneity in the experimental units.

Causality requires treatment applied to units that are as alike as possible.

++todo Define an experiment; what is a good experiment.++

3.1 Causality, Correlation, Independence

3.2 Background

The confusion about causation can be observed in this example from Wikipedia

++todo get site page++ which claimed to show that correlation can imply

causation.

Run an experiment on identical twins who were known to consistently

get the same grades on their tests. One twin is sent to study for six

hours while the other is sent to the amusement park. If their test scores

suddenly diverged by a large degree, this would be strong evidence that

studying (or going to the amusement park) had a causal effect on test

scores. In this case, correlation between studying and test scores would

almost certainly imply causation. (Wikipedia)

The different test scores can also be explained if the twins have a device which gave

them the answers. The twin that goes to the amusement park looses the device and

gets a low grade. So there is more than one possible explanation and the causal

argument falls apart.

1For example of a lack understanding of the benefit of experiments Siedler and Sonnenberg
(2010, see).
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David Hume (1771–1776) argued that we cannot obtain certain knowledge of

causality by purely empirical means; that is, we cannot know a causal link by

observing correlation.

Kant argued that we can use reason to assert when a correlation implies a

causal link. Kant was thinking about plausibility, ++todo was Kant using

plausibility, find source reference.++ Hume was thinking about ++todo

find better phrase++ certain knowledge. So while correlation does not imply

strict causality it may provide some evidence for one. (Think cigarette smoking and

lung cancer.)

3.3 Causality and nonrandomized research

Making causal links is more difficult in nonrandomized research designs; certain

causation is impossible. The APA Statistical Task force summarized it:

Inferring causality from nonrandomized designs is a risky enterprise. Re-

searchers using nonrandomized designs have an extra obligation to ex-

plain the logic behind covariates included in their designs and to alert

the reader to plausible rival hypotheses that might explain their results.

Even in randomized experiments, attributing causal effects to any one

aspect of the treatment condition requires support from additional ex-

perimentation. (APA Task Force (apataskforce )).

3.4 Does Correlation Imply Causation

Correlation does not imply causation because there could be other explanations for

the correlation. Causes is an asymmetric relation (X causes Y is different from Y

causes X), whereas is (linearly) correlated with is a symmetric relation.

But in order for A to be a cause of B, A and B must be associated, though not

necessarily correlated.

Remark 3-1

Lack of correlation does not imply lack of causation. �

Examples

We can find many examples of correlated (a statistical or mathematical relationship)

variables which have no support for causality:

• Number of shark attacks and ice cream sales. Both are endogenous to the

temperature perhaps?
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• The experiment on rats and synthetic fats (taken from the Freakonomics blog).

• Freakonomics has a lot of examples.

Does Causation Imply Correlation

Causation does not necessarily infer correlation. In order for A to be a cause of

B they must be associated in some way. This association or dependence is not

necessarily linear correlation. Consider X ∼ N (0,1) and Y = X
2 ∼ χ2

1. Since X

determines Y we have causation, but X and Y have zero correlation.

Proof 3.4.1 The expected values of X and Y are E[X ] = 0 and E[Y ] = E[X2] = 1,

the covariance between X and Y is

Cov[X,Y ] = E[(X − 0)(Y − 1)] (3.4.2)

= E[XY ] − E[X ]1 (3.4.3)

= E[X3] − E[X ] (3.4.4)

= 0 . (3.4.5)

are: E [X ] = 0, E [Y ] = E
[
X

2
]
= 1,

Cov[X,Y ] = E [(X − 0)(Y − 1)] = E [XY ] − E [X ] = E
[
X

2
]
− E [X ] = 0 . (3.4.6)

The odd moments of the standard normal distribution are all equal to zero Ap-

pendix E, so (3.4.2) is equal to zero and the correlation is equal to zero.

3.5 Independence and Correlation

Two variables X and Y can have a zero correlation coefficient and be independent.

This is because correlation means linear correlation.

Example 3-1

The relation of Y to X influences the size of the change in Z, but an

unobserved third variable determines the direction of the change (e.g.,

P. I. Good and James W. Hardin, 2009). �

3.6 Natural Experiments

A natural experiment takes advantage of an assignment of some respondents to a

treatment that happens naturally in the real world. Since assignment of respondents

to treatment is not controlled by the experimenter any causal inference is weaker

than in a randomized experiment.

http://www.freakonomics.com/2011/06/30/do-synthetic-fat-substitutes-make-you-fat-ask-the-rats-who-ate-pringles/
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Some econometricians use natural experiments to evaluate causal theories D. A.

Freedman (see 2009) and a survey by angrist2001 (angrist2001 ) . ++todo

Freedman 2009, page 213. Angrist and Krueger (2001) survey.++



4 Zen of economic

experiments

ECONOMIC experiments are motivated (or at least should be, this ignores the

type of “do this and see what happens” experiment) by the desire to answer a

question or discover a process. This is the same motivation that drives any type of

research project or agenda.

When used to test market institutions, Smith ++Find ref Smith source.++

describes laboratory experiments as a formal, replicable, and relatively inexpensive

means of analyzing different market mechanisms. Properly designed experiments

can be used to test the performance of these mechanisms in a variety of conditions,

provide insights into the properties of these institutions, and highlight potential

problem areas, thereby helping to avoid costly errors. This description also describes

behavioral studies, theory testing and other research.

4.1 Description

Generally, economic experiments have a unique structure, though, elements of clin-

ical and agriculture can be found in an economic experiment. ++todo For

example.++ So what is unique, different, and interesting from a statistical point

of view about economic experiments? Some elements of an economic experiment:

• Subjects are nested in group (often the basic unit of observation).

• Observations repeated over time in a series of periods in a single session (trial).

Time period cannot be randomized (makes it different from a split-plot exper-

imental design).

24
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• Experimental units are both individual and groups. Sometime groups within

groups are studied (e.g., spatial voting experiments; see Olson, Morton).

• Grouped subjects may interact under specified rules.

• Individual behavior or an aggregating measure (such as market efficiency) may

be of interest.

Every economic experiment is defined by an environment, controlled by the

experimenter specifying the initial endowments, access to information, preferences

and costs that motivate actions (e.g., exchange). This environment is controlled

using monetary rewards to invoke (induce) characteristics in subjects (V. L. Smith,

1991).

An institution defines the language of communication (actions and messages:

bids, offers, acceptances, choices, votes, contributions), these are the rules that

govern the exchange of information; it defines the actions available to subjects.

Experimental instructions, which describe the allowed messages and procedures of

the market, define the institution.

The experimenter controls the environment and institution of the economic ex-

periment, they define the controlled variables. The uncontrolled element is the

observed behavior of the subjects. Subject behavior is modelled as a function

of the controlled environment and institution. Extraneous variables and variation

augments a behavioral model. Some behavior is modeled by a probability model.

These three elements environment, institution, and behavior form the Mount-

Rieter triangle.

Place Holder

E = environment: Agents, commodities, preferences,

X = set of outcomes, choices to make

(M,g) = (mechanism, institution, language, rules)

b(e,g) = m \in M, individual behavior

experimenter chooses : (E, X, (M,g))

Usually planner does not know the environment with certainty

4.2 Types of economic experiments

Very broadly, economists run experiments for one of XX reasons:

• To test decision-theoretic or game-theoretic models.
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• To explore the impact of different institutional details and procedures, (for

example, to study the differences between auction types).

• To study the behavior of individuals.

• To provide an instance where a conjecture or theorem does not hold.

• To provide an instance where a conjecture or theorem does hold.

The last two are variations on the black swan, without the black dye, or counter

examples. See 11.1 for an example. ++todo Should punctuation be colon

item period or item comma.++

Economic experiments can be grouped into three classes for statistical analysis:

1. Test for a difference between treatments, the k-sample problem. This is con-

firmatory data analysis.

2. Test the data against a specific outcome, the k-sample problem. Lacks ran-

domization, this is exploratory data analysis.

3. To observe if the observations fall within a defined (sometimes weakly defined)

set of possible observations. Lacks randomization, this is exploratory data

analysis.

++todo How do these relate to the above reasons.++

In all of these we can be interested in individual behavior or group behavior,

where group behavior can mean auctions and market environments s.

4.3 Early Experiments

This is a list of what might be called precursors to EE, though except for Cham-

berlain are unlikely to have been an influence.

• Bernoulli (1738): St. Petersburg Paradox, “thought experiment and question

(hypothetical)”.

• Thurstone (1931): Hypothetical choice to determine indifference curves.

• Joseph Barmach (late 1930s): Paid his student subjects to study boredom.

City College of New York, Scientific American Mind Dec 2007, Jan 2008, page

20–27; url:www.sciammind.com. Boredom research, url:oops.uwaterloo.ca/bored.php.

++todo check++

• Chamberlain (1948): Market experiments with known induced supply and

demand.
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• Flood (1952): Prisoners dilemma and monetary payments.

• Vernon Smith (1962): “An Experimental Study of Market Behavior” in the

Journal of Political Economy.

• Grether and Plott’s 1979 study of preference reversals. Grether, D. M. and

Plott, C. R. (1979) “Economic theory of choice and the preference reversal

phenomenon” American Economic Review, 69:623–638.

4.4 Randomization in Economic Experiments

In economic experiments subjects are conveniently obtained (a grab set) and not by

selecting subjects by random sample from the population to which the experimenter

hopes to generalize See David Freedman, Pisani, and Purves (2007, page 358, A84)

++todo Check page ref from 1998 edition?++ misinterpretations of standard

errors. The general approach is to use a convenience sample in which subjects have

been randomly assigned to treatments or which treatments have been randomly

assigned to groups of subjects.

Many researchers suggest that control (where?) is the most important ratio-

nalization of EE methodologies. Here, I indicate that randomization is at least as

important (if not more) (see Kish, 1987, page 4). Randomization is a form of exper-

imental control. The aim of experimental design is to remove disturbing variables

either by control or randomization. Randomization provides additional benefits, it

supplies a basis for causal inferences.

4.5 Experimental Bias

Some possible causes of bias:

1. Experimentalists expectations can influence outcomes.

2. Order effects (order of sessions).

3. Subject contagion, subjects in a Tuesday session talk with subjects in the

Wednesday session.

4.6 Repeating Trials

The first Chamberlain experiments where not repeated. ++Insert ref Chamber-

lain++ ++todo [++ inline]Is this true? These single period experiments

did not result in equilibrium. Later these market experiments were replicated,
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(smithv.1962 ), this time they were repeated ++todo [++ inline]Same envi-

ronment and equilibrium results were obtained. It may not be a stretch to say

that if the Chamberlain and other early experiments had achieved an equilibrium,

without repetition, that non repetition might be considered the norm in economic

market experiments.

The main reason trials are repeated in many disciplines is to study change.

Behavior changes over time (with learning and experience), a classical model (see

Kish, 1987, page 137).

But trials are not always repeated in economic experiments. In two-sided market

experiments repetition is used to provide evidence for equilibrium behavior, while

for dictator and ultimatum type games a single period is used to provide evidence for

non-equilibrium behavior. Trial repetition used to accept equilibrium predictions,

and single trial experiments are used to reject equilibrium predictions.

Hertwig and Ortman (Hertwig and Ortman, 2001) provide two reasons why

economists use repeated trials. The first is to allow subjects to learn the envi-

ronment; that is, “to accrue experience with the experimental setting and proce-

dure.” Binmore (Binmore, 1994, pages 184–185) articulated this rationale. The

second is to allow subjects to learn about the consequences of their own choices and

how their choices interact with the other participants in the experiment.

Upholding (fortifying) the use of repeated trials is the economist’s belief in equi-

librium outcomes and the expectation that subjects behavior will adjust toward the

equilibrium behavior. In economics experiments“special attention is paid to the last

periods of the experiment . . . or to the change in behavior across trials. Rarely is re-

jection of a theory using first-round data given much significance,” ((camerer.1997

)).

Trial replication takes several forms. The simplest is complete replication where

each trial is an exact duplicate of the previous trial. For example, in a market

experiment, each period (trial) will have the same subjects, each subject will have

the same values or costs, the same endowments, and the same rules. The only

difference will be each persons experience and earnings (wealth).

Second, is a variation were the environment remains the same but the partici-

pants in the decision group are changed. Third, the environment may change from

period to period. Where the environment is chosen from a set of possible environ-

ments (by some chance mechanism or set rule), which can be known or unknown to

the subjects.

Statistically, the different forms of repetition have different levels of variation,

result in more variation of the responses. Repetition also provides better estimate

of the unit, treatment relation and the estimates of variation. It can also be seen

as a cost effective method to increase statistical information (we will address this

in Chapter 14 and Chapter 15).
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Repetition provides:

• With period (trial) repetition subjects may learn about theq environment,

other subjects, and rules (treatment). In economic experiments, we are often

looking for or expecting certain results, mostly Competitive Equilibrium (CE)

outcomes. We know that we do not get these results, that we want, without

repetition; if the double auction reached competitive equilibrium in the first

period, we would unlikely repeat the period.

• Repetition also provides better estimate of the unit to treatment relation

(statistical efficiency).

• The consequences of ignoring the correlation when it exists are incorrect in-

ferences and estimates that are less precise than possible.

4.7 Replications

4.8 Structure of the Economic Experiment

Description of a session: subjects nested in group, observations repeated over periods.

Briefly to specify the ingredients of an experiment.

Types of environment:

1. No Change period to period, periods are pay-off independent. Values, param-

eters do not change. May include single period experiments such as dictator

or ultimatum games.

2. Change period to period—periods are pay-off independent values, parameters

do change (e.g., the usual auction experiments).

3. Periods are payoff dependent Earnings time t = function Earnings t − 1, t −
2, . . . ,0. Examples are electric power experiments and asset bubble experi-

ments.

For our descriptions, a period indicates payoff independence and a round indicates

payoff dependence.



5 Experimental Model

All models are wrong, but some

are useful.

George E. P. Box

This Section is a Very Rough Outline!

Models serve as a guide in formalizing the statistical basis of the data analysis

and are useful tools in guiding test procedures (Winer, 1971, page 151).

5.1 Model dependent inference

This is from Kish page 23, 24, 206; Section 1.4 1.7 7.1. Probability selection unnec-

essary. The classic model is

Yt = y +Ti + ε, with ε ∼ F (θ) .

This model has strong assumptions: there is no interaction between treatment and

experimental unit, there is no variation among experimental units. ++todo

Correct this, kish pg 14.++

By testing overall differences (ya − yb ) against subclass differences (yai − ybi );
the degree by which (yai − ybi ) is similar to (ya − yb ). The overall differences

(ya − yb ) survived the tests of falsification by potential disturbing factors repre-

sented by subclass i. Surviving the severest tests of falsification yields the strongest

confirmation of treatment effects is (ya − yb ).

Should use observation space, not sample space—but description of probability

model uses sample space as defined as ++todo define sample space++ .

30
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5.2 Probability Models

Using analytic (parametric) probability distributions, normal, Poisson, etc..

See Ben Bolker’s descriptions from his book, Ecological Models and Data in R

http://www.math.mcmaster.ca/ bolker/emdbook/index.html http://www.math.mcmaster.ca/ bolk-

er/emdbook/chap4A.pdf.

5.3 Use of Models to Analyze Experimental Data

Compare experimental observations, regression infers causation, D. A. Freedman

(2008).

David Freedman 2007, Annals Applied Stats; Amstat 62:2 may 2008 p 111;

Amstat 62:2 may 2008 p 118–119.

Method Selection

Model selection typically involves the scoring of models within a family of distribu-

tions, based on their fit and penalizing for the number of parameters used.

Method selection involves being faced with a problem (e.g., test, classify, predict)

for which we have some background knowledge (variables are known to be (e.g.,

independence, data type)), and for which auxiliary assumptions are made (e.g.,

normality, homoscedasticity), and we must select a method.



6 Design Choices and

Design Problems

“The analysis of data obtained from an experiment is dependent upon its design

and the sampling distribution appropriate or the underlying population distribution.

The design, in part, determines what the sampling distribution will be..” (Winer

(1971, page 147)) If applying the randomization model the above becomes: “The

analysis of data obtained from an experiment is dependent upon its design and the

randomization procedure used to assign subjects to treatments. The design, in part,

determines what the randomization procedure will be”.

Two parts to every experiment the design and the analysis. Experimental design

describes the assignment of treatments to experimental units to minimize experi-

mental error (variance).

Good experimental designs help reduce the experimental error in the collected

data, and eliminate the effects of extraneous variables (spurious, nuisance and con-

founding variables).

Using randomization helps average out the effect of extraneous variables, other

factors are varied to make the results more valid for a large variety of situations,

with certain designs the effects of important factors as well as their interrelationship

can be studied. A good experimental design obtains maximum reliable information

at the minimum cost.

Steps in an experiment

A few standard steps in an experiment:

1. Statement of problem to be solved.

2. Define the experimental unit.

32
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3. State the measurement scale of the response observations and the type of

distribution (binary, discrete, continuous, truncated).

4. The independent variables or factors that are held constant, set at specified

levels, averaged out by randomization. Fixed (endowment is 100 or 200),

random (value is from a uniform distribution), qualitative, quantitative.

6.1 The Design

Important questions that the experimental design must answer are: How is the

data collected? How many replications (the sample size)? The order in which the

experiment sessions are to be run. To use random (or constrained random) so that

uncontrolled variables will tend to average out.

Kuehl (Kuehl, 2000, page 25) discusses relative efficiency of experimental de-

signs.

Describe the randomization procedure and a mathematical model to

describe the experiment.

6.2 Fundamental assumptions of experimental design

Independent Observations, Identically Distributed Observations good.errors page

40, are usually given as requirements ++todo Give cite where.++

6.3 Experimental design

Controlled variables, blocking, and randomization. Randomization permits the ex-

perimenter to proceed as if the errors in measurement are independent.

Hinkelmann and Kempthorne (Hinkelmann and Kempthorne, 1994) gives three

principles of experimental design.

1. Replication

2. Randomization

3. Local Control or Blocking

Subject Randomization

Some experimental labs use a database of potential subjects when recruiting, the

choice of subjects is supposedly randomized, which may not be the case. Students

in the database are not uniformly distributed over session times, it may be that at

1:00pm Monday there are 100 students available, while at 1:00pm Tuesday there

may only be 14 students available. A student could be recruited many more times
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at the Tuesday time slot, so that a Tuesday subject becomes more experienced

and is more familiar with the other subjects in the experiment, creating a bias.

++todo Find a better word than bias.++ This example may not be extreme;

the probability of a student becoming a subject is rarely if ever examined possibly

leading to session and order effects. Another possible bias is class recruitment bias:

most of the subjects available in the 2:00pm time slot were recruited from a 1:00pm

engineering class. The behavior of the engineering subjects may be very different

from the behavior of subjects from an introduction to economics class. An individual

does not have the same probability of being assigned to each treatment.

How can this become a problem? Using a simple example, consider, a random-

ized experiment with two treatments A and B ; suppose treatment A is run Mondays

at 1:00pm for three weeks and treatment B is run on Tuesdays at 2:00pm. If there

is a session effect or an order effect, any treatment effect ++todo Session, or-

der effects++ will be confounded with the session or order effects. Some harsh

assumptions must be impose to breakout the various effects. The confounding can

be mitigated ++todo get definition of mitigated++ by randomizing the

treatment sessions by constrained randomization (i.e., exclude session applications

such as ABABABAB and such that the session/order effects are minimized). For

example, ++Explain take example from brt paper++ .

Cross-over Design

A common design variation is the crossover design, where the same subjects are

exposed to all treatments (or a subset of treatments with more than one treatment).

Treatments are performed in a sequence.

For example, if there are two treatments A and B, in a single session (trial)

subjects are exposed1 to treatment A for the first ten periods (1–10) and treatment

B for the second set (11–20).

If there are three treatments A, B, and C, a single session (trial) subjects are

exposed to treatment A in periods 1–10, treatment B in periods 11–20, and treatment

C in periods 21–30.

A cross-over design has advantages, ++todo give advantages of cross-

over++ but it also has disadvantages. One problem is hysteresis, where the

application of the first treatment may influence treatment B response. See for

example, Algemest, Nousair and Olson. ++todo provide example++

Example Place Holder

Example of hysteresis.

1Exposed may be too clinical sounding, but I do not have a better word at the moment.
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Comp: Hand

Eng : AB Eng : AB (MU1 / MU2)

BA BA

SB : AB SB : AB

BA BA

Winer gives a test for sequence effect (see Winer, 1971, pages 561–562); the usual

analysis of within-subjects assumes treatment order is randomized (see Winer, 1971,

pages 498, 502,503). SeeWiner for counter balancing order effects. General MANOVA

is not possible since the number of observations (sessions) is less than the number of

periods. An alternate approach is to test for the Huyn-Feldt condition. ++todo

Check on this?++

Advantages Within Subjects Design

A within subjects design is (Maxwell and Delany, 2004, page 527) to be explained.

Choosing Values, Costs

Suppose you want to know which set of auction rules A or B results in higher

efficiency? Your conclusion may be dependent on the values that are assigned to

the subjects.

Example Place Holder

As a simple example the valuations may be such that any auction design

gives high efficiency.

Simulation

How are values chosen and what metric can we use? Can we be sure we are not bias-

ing the results toward one of the auction rules. One possible procedure is to simulate

the auctions under the different sets of rules for different values. A difficulty is to

choose the behavioral rules to simulate auction performance. Possibilities are dom-

inant strategy, zero-intelligence (see ++Find ref zero intelligent traders++ ),

and others. The other difficulty is deciding the metric used to choose the valuations.

Perhaps it may be easiest to rule out bad valuations.

Graphic Place Holder

| | ___

| /\ | _____/ \___
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| / \ | _/ \

|/____\__________ or |/________________\_______

100% 95% 100% 75% 50%

++todo Construct a real graphical example.++

Explanatory Power

To give more explanatory power to an experiment, the construction of alternate

outcomes is important. For example:

Graphic Place Holder

p | _ p | _

| |_ | |_

| | | |_ ___

| _|= | ___|___

| _| | _/

|_____________ or |/____________

q q

A B

The design on the right has a larger feasible set. If your experiment has a larger

feasible set it has a strong strength of evidence.

Example 6-1

Treatment A has two sellers and three buyers, each with unit demand

or supply. Demand = 50,40,25, supply = 10,20, the market has four

outcomes that assign two units. If the null hypothesis is random out-

come, you have a 25 percent chance that you will observe any of the

four outcomes.

Treatment B has three sellers and three buyers, each with unit de-

mand or supply. Demand = 50,40,25, supply = 10,20,30, the market

has six outcomes that assign three units. If the null hypothesis is ran-

dom outcomes, then you have a 162/3 percent chance to observe any of

the six outcomes.

If the alternative hypothesis is a single outcome from the feasible set,

then in experiment A there is a 25 percent chance that the alternative

is observed by chance. In experiment B there is a 162/3 percent chance.

Experiment B has a lower probability of a chance observation, the

p-value is smaller, so it is stronger evidence against the null. �
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Blocking

Assume the relationship among treatments will be constant from block to block, see

Miller and Johnson (millerjohnson ). ++todo Look at miller johnson.++

Blocking and Experimental Units

Example Place Holder

\label{sec:dc-blockingUnits}

We have three types of fertilizer and we want to see which helps a

plant grow.

We plant five seeds in each 6 pots, and randomly apply each

fertilizer to two pots. There are two plots per treatment.

In this design the pots are experimental units; pots are randomly

assigned to a fertilizer treatment. The plants in a pot are

assigned together so the observations from the plants in each pot

are not independent.

++todo Check Cassella, Extend this example in the ANOVA section++

The replication of objects inside the experimental unit (plants in the pot) is some-

times called pseudo-replication. Increasing the number of plants in a pot has no

effect on the test statistic; to increase power, you need to increase the replications

of the experimental unit. The increase in the number of plants may have affect the

accuracy ( ++todo Accuracy correct word.++ ) of the measurement of the

growth of the plants in each pot. A single plant dying in a pot of ten plants has

less of an influence than a single dead plant in a pot of four plants. ++todo Do

analysis to compare efficiency of estimators.++

Some additional citations to look at:

Good P. I. Good and James W. Hardin (2009, page 44), Fisher Ronald A.

Fisher (1925), Fisher Ronald A. Fisher (1935b), Neyman Neyman, Iwarzkiewicz,

and Kolodziejczyk (1935) and Montgomery and Myers 1995 (Montgomery and R.

Myers, 1995)

++todo check: Inference small sample, asymptotic vs exact condi-

tional inference, Stat Sci 2008, 23:4, pg 465–484.++

Hötelling Example

This example is attributed to Harold Hötelling Chernoff, 1972. Additional cite.
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The weights of eight objects are to be measured using a pan balance and set of

standard weights. Each weighing measures the weight difference between objects

placed in the left pan vs. any objects placed in the right pan by adding calibrated

weights to the lighter pan until the balance is in equilibrium. Each measurement

has a random error. The average error is zero; the standard deviations of the

probability distribution of the errors is σ on different weighings; and errors on

different weighings are independent. Denote the true weights by θ1, . . . , θ8.

We consider two different experiments:

One: Weigh each object in one pan, with the other pan empty. Let Xi be the

measured weight of the ith object, for i = 1, . . . ,8. There are 8 measurements.

Two: Do the eight weighings according to the following schedule and let Yi be

the measured difference for i = 1, . . . ,8:

left pan right pan

1st weighing 1 2 3 4 5 6 7 8 (empty)

2nd 1 2 3 8 4 5 6 7

3rd 1 4 5 8 2 3 6 7

4th 1 6 7 8 2 3 4 5

5th 2 4 6 8 1 3 5 7

6th 2 5 7 8 1 3 4 6

7th 3 4 7 8 1 2 5 6

8th 3 5 6 8 1 2 4 7 .

(6.3.1)

The weight θ1 can be estimated from the 8 measurements as

θ̂1 =
Y1 +Y2 +Y3 +Y4 −Y5 −Y6 −Y7 −Y8

8
. (6.3.2)

The question of design of experiments is: which experiment is better?

The variance of the estimate X1 of θ1 is σ2 if we use the first experiment. But

if we use the second experiment, the variance of the estimate given above is σ2/8.

Thus the second experiment gives us 8 times as much precision for the estimate of a

single item, and estimates all items simultaneously, with the same precision. What

is achieved with 8 weighings in the second experiment would require 64 weighings

if items are weighed separately. However, note that the estimates for the items

obtained in the second experiment have errors which are correlated with each other.

Guidelines

Randomize and use controls. Other guidelines are usually to use blind observers

and to conceal treatment allocation; but are these guidelines relevant to EE.
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6.4 Data Pooling and Simpson’s Paradox

“To count is modern practice, the ancient method was to guess,”(Samuel Johnson).

Politico A declares that taxes (tax-rate) have been increasing, politico B declares

that taxes (tax-rate) have been decreasing; can they both be right? The tax-rate

declines in each income category; yet overall the tax-rate increases. Why? Because

of inflation there are more individuals in higher tax brackets.

Fienberg 1977, 3.8; Yule and Kendall, 1965, Chapter 2; describe this as collapsing

tables. ++todo Is this from Kish.++ A similar phenomenum is called

Simpson’s paradox.

Some experimental studies lend themselves to subgroup analysis. A common

type is dictator type games, where there is interest in determining if gender affects

the contribution level. The analysis can sometimes be confused. One error of con-

fusion is determining if there is a gender effect; a common analysis is to test if the

distribution of male contributions is different from the distribution of female contri-

butions. This, however, is not the correct question to ask. This is demonstrated in

the following example:

Example 6-2

In a contribution type experiment with all or nothing (0 or 1) contribu-

tions there are two treatments A and B, and an equal number of male

and female subgroup contributor’s. �

Table 6.1. Aggregate male and female subgroup contributions; (number of 0 contributions,

number of 1 contributions)..

Total

(0,1)

Male 10,10

Female 10,10

It would appear that the contributions in Table 6.1 are the same for male and female,

so we could infer that there is no difference between the two subgroups. However,

this is the aggregate contributions. If we look at contributions by gender and treat-

ment we see that females contribute in the same proportions in both treatments,

while males contribute more in treatment A. So the two subgroups male and fe-

male contribute differently. The problem arises because the wrong question is being

asked. Since the research question asks: do subjects contribute differently in the

two treatments?, the appropriate question to ask is: do the two group contribute
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Table 6.2. Disaggregate contributions of male and female subgroups in treatments A and

B..

Treatment A Treatment B

Male 2,8 8,2

Female 5,5 5,5

differently in the two treatments? It is a common mistake to compare the aggregate

observations (contributions) instead of the treatment observations (contributions).

When we disaggregate the date into subgroups we may find a dilemma; we

may observe that in each the subgroups, treatment A has a larger statistic (in

the contribution example this means more contributions) than treatment B, while

with the aggregated data treatment B is larger. This can be demonstrated in the

following example

Table 6.3. Number of contributions for male and female subgroups in treatments A and B.

Number of male or female subjects in parenthesis..

Gender Treatment A Treatment B

Male 80 (400) 240 (800)

Female 420 (600) 160 (200)

All 500 (1000) 400 (1000)

Example 6.4.1

Table 6.4. Percent contribution for male and female subgroups in treatments A and B..

Gender Treatment A Treatment B

Male 20% 80/400 30% 240/800

Female 70% 420/600 80% 160/200

All 50% 500/1000 40% 400/1000

Example 6.4.2

In Table 6.4 treatment B has a higher percentage contribution for both male and

female subgroups; but treatment A has a higher percentage contribution (50% to

40%) for the aggregate. Which is correct, if either? In Figure 6.1 we find an

explanation. Figure Figure 6.1 is an example where pooling the classes male, female
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Figure 6.1. Example of pooling male and female observations. Males and females are in

different proportions for the treatments A and B. Pooling male and female groups give the

appearance that A is larger than B. But separately B is larger than A for each subgroup..

lead to an error in inference. ++todo How to change font of Figure simpson,

and global caption++

This reversal known as Simpson’s paradox Yule (1903) and Simpson (1951),

occurs when an observed association between two variables is reversed after con-

sidering the third variable. Simpson’s paradox was illuminated through a graphic

developed by Jeon, Chung, and Bae Jeon, Chung, and Bae (1987) (and indepen-

dently reinvented by Baker and Kramer Baker and Kramer (2001)) and described

in Howard Wainer and L. M. Brown (2004).

This paradox gets its name after Simpson (Simpson, 1951). However, in Fienberg

(1994, page 51) and Alan Agresti (1990, page 155), the authors emphasize that this

paradox has been discussed by Yule (Yule, 1903). ++todo Agresti, there is a

2010 edition, GET page number++ .

Mathematically, Simpson’s paradox states that for three events A, B, C and

their complements A
c , B

c , C
c , it can happen that P(A|B) < P(A|Bc

) even if both

P(A|BC
) > P(A|Bc

C) and P(A|BC
c
) > P(A|Bc

C
c
). A reversal can also occur with

significance levels and hypothesis tests; for instance, the subgroups could test sig-

nificant and the aggregate not significant (or the other way around).

Example Place Holder

Give example and sites of significant tests reversal;
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Was this the original question?

Simpson’s Paradox will generally not be a problem in a well designed experiment

or survey if possible lurking variables are identified ahead of time and properly

controlled. This includes

• eliminating them,

• holding them constant for all groups, the number of males/females are the

same for all treatments, and each treatment has the same number of observa-

tions.

• randomizing, or

• making them part of the study.

The third variable which causes the reversal at the direction of association is also

called confounding variable. Pearl (Pearl, 1998) defines the confounding variable as

extraneous variable which tends to confound our reading and to bias our estimate

for the effect studied.

Example Place Holder

Suppose observe $Y$ under two treatments A and B. When only the

males are measured A is not significantly different from B; and

when only the females are measured A is not significantly different

from B. But when the male and female data are pooled A \emph{is}

significantly different from B.

Three possible explanations:

\begin{itemize}

\item One treatment (A or B) has more more males but the other has more

females.

\item The distribution of Y differs between males and females.

\item Within each sex separately, the distribution of Y is exactly the

same for both A and B.

\end{itemize}

++todo Check on the last item?++

Using a designed experiment with randomization is one choice to prevent the

possibility of Simpson’s paradox. Blocking with respect to a variable which may

affect the relation would be a solution.
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However, considering the number of variables which may confound with inter-

ested variables, it is not possible controlling all of them even if we design an exper-

iment. Hence, there will still be a chance for paradoxical result

It is important to understand how the within-group and aggregate comparisons

can differ.

When assignment is not random the possibility of Simpson’s paradox is always

lurking in the background.

Benjamin Disraeli (1804–1881) was twice prime minister of England

(1868, 1874–1880). At an earlier time in his career he was an outspo-

ken critic of Sir Robert Peel’s (1788–1850) free-trade policies, and to

support his criticism he offered data defending the Corn Laws (1845).

Peel offered counter data that justified his desire to repeal them. The

two sets of data seemed contradictory, and, it is said that Disraeli, not

knowing about Simpson’s Paradox (or the use of standardization to cor-

rect it), exclaimed out of frustration, “Sir, there are lies, damn lies, and

statistics.” (Howard Wainer and L. M. Brown (2004))

Other sources have attributed this quote to Mark Twain.

++todo Expand on.++

See Wardrop (1995), Appleton, French, and Vanderpump (1996), Rinott and

Tam (2003), and Greenland (2010), and Dawid (1979), Simpson (1951), and Gly-

mour and Cooper (1999), and Samuels (Samuels, 1993) has a general discussion.

Covariates and Lord’s paradox

Another paradox, which was first described by Lord (Lord, 1967), emerges when

we try to estimate the size of the effect of treatments on subjects (see also P. W.

Holland and D. B. Rubin, 1983; H. Wainer, 1991).

Covariate (sample variable): an observed characteristic that is, taken as is, e.g.,

time period, subject age. Covariates and blocking can be used to reduce variation.

Davis C. S. Davis, 2003 ++todo check page++ and Pedhazur (Pedhazur,

1997) describe the problems arising when one tries to control for a covariate in a

way that ultimately makes no conceptual sense (see e.g., Pedhazur, 1997, pages

156–160 and 170–172).

About the numerical strength of the X-Y relationship, the consensus in the field

seems to be that a correlation of at least 0.3 is typically required in order for the

increased precision to compensate for the additional degree of freedom the covariate

adds to the model Shadish, Cook, and Campbell (see 2002, page 157) and Pedhazur

(see 1997, page 638). ++todo See Cook & Campbell 157; maybe wrong

site.++
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Lord’s Paradox referred to by Betebenner involves the possibility of obtaining,

with the same data, a result of zero mean difference using one of these two methods

(ANOVA and ANCOVA) but a significant difference using the other.

See Howard Wainer and L. M. Brown (2004) also describes Lord’s paradox. This

question was posed previously by Fred Lord (1967) in a two-page article that clearly

laid out what has since become known as Lord’s paradox. He did not explain it.

The problem appears to be that the analysis of covariance cannot be relied upon to

properly adjust for uncontrolled preexisting differences between naturally occurring

groups. A full explanation of the paradox first appeared fully 16 years later (P. W.

Holland and D. B. Rubin, 1983) and relies heavily on Rubin’s model for causal

inference (D. B. Rubin, 1974).

6.5 Regression Toward the Mean

EMPTY

references

See Amstat 62:4 2008, pg 289 and Chance 22:1 winter 2009, pg 31. The effect of

regression to the mean in repeated measure. Rogosa, 1995

6.6 Regression Fallacy

A. We observe that subjects who had high bids in the first period lowered their bids

in the second period.

B. We observe that subjects who had high bids in the first period lowered their

bids in the second period after they were given market information.

Should we believe this result? We observe A, if the subjects bid randomly. So

that we could not determine if the observations came from subjecs acting randomly

or there was an effect from providing market information.

When any group of subjects with low values on some measurement is later

remeasured, their mean value will increase without the use of any treatment or

intervention.

This is the regression effect, and the misinterpretation of the regression effect

is the regression fallacy. It occurs when the regression effect is mistaken for a real

treatment effect.

Perhaps you have read something like this: introducing information did not sig-

nificantly change the group mean, but those subjects with low initial bids increased

them, subjects with high initial bids decreased them.

The regression fallacy occurs when subjects are enrolled into a study on the

basis of an extreme value of some measurement and subsequent observations (on

the same or different measurement) are not as extreme.
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Randomization and controls can be used.

To quote Fleiss (p.194), “Studies that seek to establish the effectiveness of a new

therapy or intervention by studying one group only, and by analyzing change either

in the group as a whole or in a subgroup that was initially extreme, are inherently

flawed.”

6.7 The Ecological Fallacy

EMPTY

The ecological fallacy is usually associated with observational studies. Experiments

are not immune.



7 Preliminaries

Forget “large-sample” methods.

In the real world of experiments,

samples are so nearly always

“small” that it is not worth

making any distinction, and

small-sample methods are no

harder to apply.

George Dyke, 1997

7.1 Types of Data

Measurements and data types

A relationship that assigns numbers (or symbols) to elements of a set is called a

measurement scale (also called scale of measurement), the assigned numbers (or

symbols) reflect relationships of the attributes of things being measured.

A measurement scale is a function that assigns a real number to each element

in a set of observations (observed judgments) (see Paul F. Velleman and Wilkinson,

1993). The term nominal data is misleading, the scale of measurement used may

be the nominal scale but the data are not nominal. This also applies to the ordi-

nal, interval, and ratio scales. Nominal, ordinal, interval, and ratio should refer to

measurement scales, not data types. These categories of measurement were origi-

46
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nally developed to help guide people towards appropriate forms of analysis. Also,

variables are not nominal, ordinal, interval, or ratio.

Scales are assigned and are not an attribute of the data.

Scale type is an attribute of the data, if the data are the result of a mapping

preserving an empirical relational structure. Without such a structure there are

no restrictions on the scale type one might assert the data to have, but with such

restriction the scale type is determined. For example, the measurement of contribu-

tions in a dictator game, ($0, $2, $4, $6) or (0, 2, 4, or 6 dollars), could be treated

as interval, ratio, or ordinal categorical. ++todo Correct?++

P. I. Good and James W. Hardin P. I. Good and James W. Hardin (2009, page

55) gives four assumptions for most measurement processes:

1. random,

2. from a single fixed distribution, with a fixed location, and a fixed variance.

To examine use four plots time-plot, lag-plot, histogram, normal probability plot.

++todo see good.errors++

++todo This is all too much and convoluted.++

A categorical variable has a measurement scale consisting of a set of categories.

For instance, as a response to “What type of vehicle do you drive?”, the set of

response categories may be sedan, coupe, truck, SUV, motorcycle, or N/A. Or an

experimental subject may be asked to vote for A, B, or C.

The measurement scale defines the permissible transformations.

The importance in describing the measurement scale is that the scale determines

(or restricts) the available statistics and procedures. For example, the mean can

apply to interval and ratio measurements, while the median can also apply to ordinal

measurement. Applying the ordinal scale to the data removes the possibility of using

a linear model. The researcher’s responsibility is to find the best way to represent

the data in real numbers.

A non exhaustive list of measurement levels are:

nominal A categorical variable with an unordered scale is called a nominal variable.

Such as red, white, and green.

Permissible transformations are any one-to-one or many-to-one transforma-

tion, although a many-to-one transformation loses information.

Examples: Political party.

ordinal A categorical variable with an ordered scale is called an ordinal variable

or ordered categorical variable. Ordered categorical variables have a natural

ordering. Such as slow, fast, and very fast.
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Permissible transformations are any monotone increasing transformation, al-

though a transformation that is not strictly increasing loses information.

Examples:

Interval Differences between the numbers reflect differences of the attribute.

Permissible transformations are any affine transformation t(m) = c ∗ m + d,

where c and d are constants; another way of saying this is that the origin and

unit of measurement are arbitrary.

Examples: temperature in degrees Fahrenheit or Celsius; calendar date.

Log-interval Things are assigned numbers such that ratios between the numbers

reflect ratios of the attribute. If m(x)/m(y) > m(u)/m(v), then a(x)/a(y) >

a(u)/a(v).

Permissible transformations are any power transformation t(m) = cm
d , where

c and d are constants.

Examples: density (mass/volume); fuel efficiency in mpg.

Ratio Things are assigned numbers such that differences and ratios between the

numbers reflect differences and ratios of the attribute.

Permissible transformations are any linear (similarity) transformation t(m) =

cm, where c is a constant; another way of saying this is that the unit of

measurement is arbitrary.

Examples: Length in centimeters; duration in seconds; temperature in degrees

Kelvin.

Zero has a meaning.

There is no practical statistical difference between ratio and interval scales or

variables, since the ana we will use only the term interval.

Variables

A variable can be discrete or continuous

Three types of discrete variables ordered (ordinal), unordered (nominal), and

binary.

A ratio variable is not necessarily continuous, a count variable is a ratio variable.

“sample spaces are discrete, and all observable random variables have discrete dis-

tributions. The continuous distribution is a mathematical construction, suitable for

mathematical treatment, but not practically observable,” (E. J. G. Pitman (Pitman,

1979, page 1)).
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When the domain (or range) of a variable takes on many values, it is easier to

treat it as having a continuous distribution.

Nunnally/Bernstein suggest to treat a variable as continuous if it has at least 11

distinct values (p. 115). Nunnally, J.C. and Bernstein, I.H. (1994). Psychometric

Theory (3rd ed.). McGraw-Hill Series in Psychology.

7.2 Experimental Terms

Experimental units (individuals, subjects, or groups-sessions) are the units being

studied. They can be measured on several occasions, conditions, or times which

form a response profile.

A factor is a classification that identifies the source of each datum. The levels

of the factor are individual classes of a classification. A response, a treatment is

a factor applied by the investigator. A cell is a subset of data occurring at the

intersection of one level of every factor.

Example 7-1

(Drug / Sex / Marital Status) are factors (A / B / C, M / F, Married

/ Not Married) are factor levels. �

Example 7-2

In the above example Drug is applied by the investigator. One of the

drugs A, B, or C is applied to a group of subjects/participants. �

In an experiment the dependent variables are responses and the independent

variables are factors. A factor can be quantitative or qualitative, it can be fixed or

random.

In repeated measures data the levels of one or more factors cannot be randomly

assigned. Levels of time cannot be assigned at random to time intervals; which

implies the covariance structure. First is first.

The objective is to compare the observed response of treatments on experimental

units. For the best comparison, experimental units should be as much alike as

possible.

Of interest is the extent to which different levels of a factor affect the variable

of interest (the response), that is, the effect of the levels of a factor (usually the

treatment) on the response.
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Effects can be modeled as fixed or random; fixed effects are modeled as a fi-

nite set of levels of a factor and random effects are modeled as from a probability

distribution.

It is important to remember that the distinction between random or fixed effects

is the way of modeling the experiment. Random effects are more parsimonious than

fixed effects. It is not as a referee once said “I do not believe in random effects”.

Cite Eisenhert 1947 ++Find ref Eisenhert 1947++ realized that there

were two fundamentally different types of categorical explanatory variables: fixed

effects and random effects.

Fixed effects influence the mean of the response variable; random effects influ-

ence only the variance of the response variable. Fixed effects are unknown constants

to be estimated from the data. Random effects govern the variance-covariance struc-

ture of the response variable. The important thing to remember is that observations

that contain the same random effect are correlated; so the observations are not in-

dependent. ++todo [++ inline]Why?? this Crowder page 361.

Treatment (experimental variable): is a characteristic that has been assigned to

the unit at random by the investigator, e.g., the type of auction to compare sealed

bid or English auction.

Repeated Measures

Repeated measurements refers broadly to data in which the response of each exper-

imental unit (or subject) is observed on multiple occasions (or multiple conditions).

The term longitudinal data is often used, sometimes it is used when the repeated

measurements factor is time, or it refers to data collected over an extended time

period, often under uncontrolled conditions. Repeated measurements is then used

to describe data collected over a short time period, frequently under experimental

conditions.

I will use the term repeated measurement, to refer to multiple measurements (of

the response variable) obtained for experimental units in a controlled experiment

over time. I will use longitudinal data to refer to multiple measurements obtained

for observational units in an uncontrolled experiment or observational study.

Lindsey (Lindsey, 1999, pages 8, 9), defines a repeated measurement to be more

than one observation on the same response variable on each experimental unit.

Generally response between experimental units are independent; responses within

an experimental unit are usually not independent.

Repeated measures (the levels of one or more factors) cannot be randomly as-

signed. Levels of time cannot be assigned at random to time intervals, this implies

a covariance structure; first is first.
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Why repeated?

Repeated measures are effective for studying change (Diggle et al., 2002, page 20).

Consequences of ignoring the correlation when it exists are incorrect inferences

and estimates are less precise than possible. The usual ad-hoc response is learn-

ing? ++todo IS IT?++ There are additional statistical reasons for repeated

measurements. ++todo Show them.++

Variability

Explained by sources of variability (or error) that are not explained by the statistical

model ++todo reference?++ . Variability in individuals Diggle et al. (2002,

page), variability in individual response to the same situation, variability in grouping

of individuals

Learning in Repetition

In an economics experiment

At least three types of learning, one, the individual learns rules (of the game,

mechanism, or institution), two, the individual learns re-actions and actions of oth-

ers in group (the individual learns the response to their own actions).

Usually measure group response and individual response; the importance of each

depends on the aims of the study—efficiency of mechanism, individual behavior.

What if no learning or change overtime shows efficiency advantage?

Repeated Trials

One aim of analysis is to model the mean response profiles in groups. We can

observe behavior in plots (general patterns, variance, irregularities, outliers); but

also want to make general statements summarize the apparent behavior, quantify

it, describe it accurately, compare behavior of different groups of units.

Multiple series can more readily test particular structure of the covariance ma-

trix.

Repeated measures are basically multivariate observations, but in restricted

form. The same unit/object is measured sequentially over time, which forms an

inherent dependence.

If observations are independent, then the statistical evidence is stronger than

with observations that are measured on several occasions.

Graphic Place Holder

/\ /\
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Books for repeated measures:

• Hand and Taylor (Hand and Taylor, 1987), limited approach Crowder and

Hand (1991), comprehensive overview aimed at statisticians,

• Wide-ranging emphasis on modeling the data analysis, Lindsey (Lindsey, 1999)

• Diggle et al. (Diggle et al., 2002) discussion of various models, Longford (Long-

ford, 1993).

• Basic terms (Crowder and Hand, 1991) basic terms.

Further discussion of types of analysis start Chapter 9.

7.3 Types of Analysis

Data analysis has two components which operate side by side: exploratory and

confirmatory analysis. Exploratory Data Analysis (EDA) is detective work, it com-

prises techniques to visualize patterns in data. Confirmatory Data Analysis (CDA)

is judicial work, weighing evidence in data for or against a pre-specified hypothesis.

Separate contexts for discovery and for justification.

Exploratory Data Analysis

EDA is not the whole story, it is the first step (see John W. Tukey, 1977) and an

important concept in experimental data.Researchers who use EDA to mine the data

and for hypothesis for confirmatory analysis is a possible abuse. In a science where

the replication of experiments is common this would not be a big problem. Replica-

tion is rare in experimental economics. Inference from EDA must be separate from

the confirmatory hypothesis.

Tests and confidence intervals are not valid during exploratory data analysis,

but they can be useful in determining the strength of any relation you find.

See Stat Sci 2000, 15:3 pg 204, 263. Discovery see EDA John Tukey, Amer Stati

1980 34:23–25.

EDA relies mostly on visualizing data. Tukey’s book “Exploratory Data Anal-

ysis” emphasizes paper/pencil methods. These methods should not be dismissed.

As “W Huber”Pen & paper EDA is to modern stats as hand tools are to modern

woodworking. “Modern” woodworking employs many power tools like table-saws
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and routers that enable even beginners to turn out acceptable results in much less

time. However, these tools also account for thousands of missing digits and limbs

every year. People who learn to use hand tools generally learn to work better and

more efficiently even when they employ power tools.

More recent contributions on exploratory data visualization include Cleveland

Visualizing Data, Interactive Graphics for Data Analysis: Principles and Exam-

ples Theus, 2009, Hadley Wickham’s ggplot2 Wickham, 2009.

Confirmatory Data Analysis

Formal confirmatory analysis should explicitly state hypothesis as defined by ob-

served data and explicitly state what would confirm or refute your hypothesis before

running the experiments Not After. Often when running experiments you have a

good idea what the data look like. You should determine the type of tests you want

to use to test your hypothesis before running the experiment, however, once the

data are in and you do some exploratory analysis, you may find out that the data

are not normal, highly skewed, are not exchangeable. The validation of assumptions

will change the available tests; you cannot do tests and choose one after. You cannot

choose your test from a group of tests after you do them; there may be a tendency

to choose the one that confirms your hypothesis.

CDA and EDA are not in opposition but are complementary. First exploratory,

choose test whose assumptions match the data; conduct main analysis; explore the

data more, perhaps evolve conjectures for further testing. Gelman states that it is

much easier to run a plausible regression or ANalysis Of VAriance (ANOVA) than

to make a clear and informative graph

Are you Bayes?

I will not make the frequentist—Bayesian distinction. The various methodologies

are essentially a choice of assumptions. The methodology is then chosen based on

these assumptions. ++todo See Stat Sci 2011.++

Bayesian methods are rarely used to analyze simple factorial experiments; they

are applied to more complex problems. That does not mean that they cannot be

used.

For a description see “A Default Bayes H test”, Amstat, May 2012, pp 104–111.

The main problem is the choice of prior, since when using vague uninformative

priors “the Bayes factor will strongly support the null model.” See above and the

references within. An article in the same issue describes the dangers of specifying

noninformative priors.
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Econometrics

In randomized experiments, randomization serves as a basis for inference and cau-

sation. In econometrics, a structural model serves as a basis for making causal

inference. ++Explain this++

++todo Recall from Good intro Stats resampling?++

Econometrics is not designed for experimental data, it was designed because

experiments were not viable in economics. ++todo Find quote in intro to

econometrics book.++

Heckman (2000) the fundamental contributions of econometrics “that causal-

ity is a property of a model, that many models may explain the same data and

that assumptions must be made to identify causal or structural models[. . .]” (

heckman.2000 ). D. A. Freedman (See also 2009, page 213).

Econometric analysis of sample data and statistical analysis of experimental

data can yield similar data structures and the same statistical models can often be

applied to both. The different forms of randomization will influence the conclusions

with respect to causality and population inferences.

Freedman (D. A. Freedman, 2009, page 210) cites Keynes disbelief of economet-

rics. ++todo Add more.++

7.4 Statistical Testing

The goal of statistical testing is to help distinguish between real effects or differences

and chance variation (see Freedman (see D. A. Freedman, 2009, page 549) or (see

David Freedman, Pisani, and Purves, 2007, page 549)). If there is no variation, then

there is no need for statistics.

7.5 How are We to Judge Which Test to Use?

For example, we want a test statistic that discriminates between the hypothesis

and the alternative. If the hypothesis and alternative come from the same paramet-

ric distribution (a shift alternative), then the mean (a sufficient statistic in most

instances) discriminates the best.

A test is said to be exact test (exact test is not in glossary) with respect

to a compound hypothesis if the probability of making a type I error is exactly α

for every one of the possibilities that compose the hypothesis.

A test is said to be conservative test (conservative test is not in glossary) if

the type I error never exceeds α. ++todo Get definition of conservative.++

A test is said to be unbiased test (unbiased test is not in glossary) if it is

more likely to reject a false hypothesis than a true hypothesis;

Pr(̂t ≥ α | H0 is true) ≥ Pr(̂t ≥ α | H0 is false). (7.5.1)
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A sufficient condition for a permutation test (randomization also) to be exact

and unbiased is exchangeability . Bootstrapping is neither exact nor conservative,

and is generally less powerful, but is applicable to more situations. ++todo Boot

useful when others are not, Good resample 2006, page 26.++ .

Estimation: Choosing an Estimator

Against the economist grain P. I. Good and James W. Hardin (P. I. Good and

James W. Hardin, 2009, pages 60–61) advocates using a minimum loss criterion

and advises not to use a maximum likelihood estimator (MLE). A common fallacy

is that the MLE is unbiased and minimizes the mean square error. This is true only

for the MLE of the mean of a normal distribution. ++todo Check++ Other

useful criteria are impartiality, efficiency, and robustness (see Erich L. Lehmann,

1999) and Ferguson.

With a randomization model (Erich L. Lehmann, 2006) the results are deter-

mined by the set of experimental subjects and how they are assigned to a treatment.

By randomizing the assignment off subjects to treatment provides a statistical basis

for analyzing the results and making inferences. ++Explain Randomization.++

This provides a convenient model for our experiments; since random sampling is a

far cry from the truth.

Grab Set

Why is the lack of a random sample from population a problem? Let us look at

an example: take a group of students in a classroom and measure their height.

++todo Complete grabset example.++

A group is not a sample; even grabbing animals from a cage may be biased.

More active or passive animals may be easier to capture, their activity depends

on corticosteriods which are associated with many body functions. ++todo

Cite?++

There are many summary statistics: mean, median, max; however, the idea of

a confidence interval or a statistical estimate has no basis since there is no random-

ization or probability model. How can we make a probability statement about a

static group. See Freedman. ++todo Find who contradicts this idea.++

Freedman calls this a get set. ++todo Include more.++

Data snooping

Use all relevant data, parsimonious: obtain all information possible from the data.

How?

If an investigator data snoops he is more likely to be fooled by chance variation.

Data snooping is deciding the hypothesis to test after observing the data; validation
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helps minimize the negative effect of data snooping. ++todo Is this the cor-

rect use of validation?++ To avoid data-snooping use two-tailed test (David

Freedman, Pisani, and Purves, 2007, page 549).

Replicating

Replicating a study is a useful means of validation; replication is common in the

physical and health sciences, but rare in the social sciences (see D. A. Freedman,

2009, page 76). When building a model, cross validation (using part of the data to

build a model and the remainder for testing) can be useful.

Other

Statistical Testing:

• The consequences of ignoring correlation are incorrect inferences and imprecise

estimates.

• Yit = Ȳ + Tt + ei , where i = unit observed, t = treatment, assumes treatment

t is constant across experimental units. The treat-effect/stimulus-response

relation may depend on the unit/subject Yit = Ȳ +Tit + ei , or Yit = Ȳ +Tt + eit .

• Has a common distribution across t for errors Yt = Ȳ +Tt + e disregards inter-

actions between treatments and units and the variations among units.



8 Hypothesis Testing and

Significance

8.1 What is Hypothesis Testing?

A well-formulated hypothesis is both quantifiable and testable. It involves mea-

surable quantities or refers to items that can be assigned to mutually exclusive

categories (see P. I. Good and James W. Hardin, 2009, pg 15). Statistical testing

(tests of significance) helps distinguish between real differences and chance variation,

++todo Freedman page 549.++

All boy scouts are tall is not a well-formulated hypothesis because tall is not

defined and all suggests that there is no variability. We can quantify all to at least

80% of boy scouts and tall to over six feet in height. Terms like not all and some are

not statistical because they there is room for subjective interpretation. ++todo

An econ example.++ Statements such as “John is five feet tall” and“five seniors

are enrolled in Econ I” are not statistical, as they refer to individuals (or a single

group) and not a population. ++todo See Haggod, 1941 (see P. I. Good

and James W. Hardin, 2009, page 14) and Freedman for box model.++

When we do hypothesis testing we have three choices:

1. Accept the null hypothesis.

2. Reject the null hypothesis and accept one or more alternative hypothesis.

3. Gather more data.

Choice 3 is not usually considered an option, but one has to be careful (see statis-

tical evidence or significance) if we collect more data so that the significance levels

57



CHAPTER 8. HYPOTHESIS TESTING AND SIGNIFICANCE 58

are correct. Since we have already observed data we cannot retain the original

significance level.

The steps for hypothesis testing are:

1. Write down the null, primary, and alternative hypothesis. ++todo null

and primary same? good.errors pg 68 before.++

2. Determine the type of data the experiment will produce.

3. Determine the metric or statistic (a function of the data) that will measure

the data fit to your hypothesis ++todo Fix clumsy++ .

4. Determine what data will be considered a rejection of the hypothesis.

5. Choose the statistical tests that will be applied.

6. Choose the significance level of each test that will indicate acceptance of the

primary or null.

All these steps must be completed before the first experimental sessions is run.

Many of these steps 2 and 5 are often ignored. Analysis of the data is often an

afterthought. This can pose problems, after the data are gathered you may find

that there is no statistical analysis which can answer your questions. If the data

types and the tests had been considered before the experiment had been run you

might have been able to change the experiment to provide data that was easier to

analyze. You do not want to have to ask yourself after the experiments are run

“what do I do now?”

When hypothesis tests are chosen after the fact the results are more likely to

be explained by chance than the significance levels indicate. If ex-post results are

potentially useful they do not have to be ignored. You must recognize that the

results are sub-optimal (the significance levels are not reliable), and publication of

the results must indicate their exploratory nature.

Sometimes an available solution is better than finding the best solution. Any

inference on the found hypothesis displays the strength of evidence that the original

hypothesis has ++todo what wrong++ . This is an important topic in the

medical field (see Altman, 1998).

Our choice of which null hypothesis to use is typically made based on one of the

following considerations:

• When we are hoping to prove something new with the sample data, we make

that the alternative hypothesis, whenever possible.
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• When we want to continue to assume a reasonable or traditional hypothesis

still applies, unless very strong contradictory evidence is present, we make

that the null hypothesis, whenever possible.

8.2 Null Hypothesis

We define significance as unlikely to have occurred by chance if the null hypothesis

was true. It has been accepted that if an event occurs less than five percent (or

ten or one) of the time it is unlikely. One is very unlikely, ten is unlikely. There

is no reason to use any of these numbers. The common use of 10, 5, or 1 percent

critical levels may be a result of the structure of probability tables which provided

values for 10, 20, 5, 1 percent (see Stigler SS or amstat.) ++todo Restate all

of this.++

A null hypothesis says nothing has happened and an alternative hypothesis says

something has happened. Karl Popper (Popper, 2002) pointed out that a good

hypothesis is capable of being rejected, that is, a good hypothesis is falsifiable.

8.3 Hypothesis Testing Assumptions

1. Subjects are selected at random from pool of potential subjects before they

are grouped into experimental units at random, OR groups of subjects are

selected at random from a pool of potential groups (for example, classrooms),

each group is an experimental unit, OR experimental units are assigned to

treatments at random.

2. Observations and observers are free of bias.

At least one of the following is satisfied under the null hypothesis:

1. The experimental units are identically distributed (the usual assumption is

that their distribution is known).

2. Experimental units are exchangeable.

3. Experimental units are drawn from populations in which a specific parameter

is the same across populations.

Assumption 1 is the strongest and is required for a parametric test to provide

an exact significance level. Assumption 2 is required for a permutation (or random-

ization) test to provide an exact significance level. Assumption 3 is the weakest and

is required for a bootstrap test to provide an exact significance level asymptotically.

Assumption 1 implies assumption 2 implies assumption 3
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These assumptions allow us to calculate the probability of rejection under the

null hypothesis. Before we are able to calculate significance levels we must be able

to calculate the probability distribution of the test statistic under the assumptions

of the null hypothesis.

In general the fewer assumptions the smaller the rejection region. It is incorrect

to think that non-parametric tests make no assumptions; distribution free tests no

assumptions about the distribution of the observations. For instance, a typical rank

test it is usually assumed that the observation units are equally likely to occur in

each treatment. We have discussed why this is not necessarily true (see §6).

Remark 8-1

Research questions to answer In what instances, when an assumption

is removed does the rejection region decrease and is a subset of the

rejection region with the assumption. �

When we choose a test statistic we must check which assumptions are satisfied,

which procedures are robust to violations of these assumptions, and which tests

are most powerful for a given significance level and sample size. To find the most

powerful test, we find the statistical procedure (test) that needs the smallest sample

size to satisfy given levels of Type I and Type II error for the specified alternatives.

Maxwell and Delany (Maxwell and Delany, 2004, pg 24) describes Type I errors

as being gullible or overeager and Type II errors as being blind or overly cautious.

Delany from Rosnow and Rosenthal, 1989. ++todo Get Rosnow R cite from

delany.++

Tests (that is, the null distribution) can be derived under the single assumption

of random assignment of subjects to treatments or of treatments to subject groups.

The assumption is easy to implement and easy to verify. However the assumption

has a narrow scope of inference. Since no assumptions are made about the subjects,

e.g., not drawn from the same population, inferences cannot be made to general

populations; inferences can only be made to the subjects used in the experiment. In

experimental economics inferences to larger populations are not made via a statis-

tical probability model. Induction is used to make inferences to other populations.

The experimental economist tests the feasibility of a theorem (or theory) or the

differences among institutional rules in a specific context; the group of available

students. Inference to other populations cannot be addressed by statistics.

Improper Hypothesis Logic

In logic, if A, then B implies not-A, then not-B; the logic can be easily visualized

with Venn diagrams. This logic is often misapplied to p-values:
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If H0, then probably not R.

Not R therefore probably not H0.

The logic applies to definite statements and not probabilistic statements.

8.4 Probability Models

All statistical testing, hypothesis, and conclusions rely on a statistical (or proba-

bility) model of the data. A model is used to calculate the probability of a type I

error.

Four common probability models are used for making comparisons. See Erich L.

Lehmann (2006), Hayek hayek and Pesarisin (Pesarin, 2001). ++todo Check

adding.++

1. Randomization model for comparison of treatments.

2. Population model for comparison of treatments; subjects are randomly chosen

from the population of interest and assigned to treatments.

3. Comparison of attributes or sub-populations through a sample from each; ran-

dom samples are drawn from each sub-population.

4. Comparison of attributes or sub-populations through a sample from total pop-

ulation.

For models 1 and 2 treatment difference can be a cause of a difference in obser-

vations between the sets of observations; for models 3 and 4 three and four there is

only an association.

The general hypothesis, H0 : θ = θ0, asks if the data are consistent with a model

H0 (θ0).

Remark 8-2

Do we use the Fisher or NP paradigm? The answer depends on the

question. �

FisherH0 : θ = θ0

NPH0 : θ = θ0vsHA : θ = θ1 ..
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Example 8-1

Partial example: The best Neyman-Person test rejects for large values

of the ratio f (R/A)/ f (R/0). �

H0 v HA : f (R/A)/ f (R/0) 0.1, 0.2, 0.2, 90 reject ,

HA v H0 : f (R/0)/ f (R/A) 10, 5, 6, 1/90 reject ,

H0 v HA : reject H0 for r = 4; fail for r = 1,2,3 ,

HA v H0 : reject H0 for r = 1,2,4; fail for r = 4 .

Very broadly, the Neyman-Pearson approach to statistical inference is based on

the zero-one decision problem; the Fisher approach values significance testing as

summarizing data to advance an argument.

Lenhard (2006) ++todo This article also has information for a modeling

section.++

E. L. Lehmann (1993)

Fisher significance test can be seen as determining if the data event was observed

by chance. Does 7 heads out of 8 coin tosses indicate a biased coin? Was it likely

to happen if the coin was fair?

Neyman-Pearson’s hypothesis test is decision theoretic approach when there are

two disjoint alternatives, e.g., there is or there is not an effect.

We can also make a Type II errors. Neyman-Pearson’s argument was that,

without making too many type I errors, we want to minimize the probabilitity of a

Type II error.

8.5 Randomization Model

The use of inferential statistics can be justified not only based on a population

model, but also based on a randomization model. The latter does not make any

assumptions about the way the sample has been obtained. Fisher suggested that

the randomization model should be the basis for statistical inference. See, for exam-

ple, Ernst (2004) and Ludbrook and Dudley (1998). Random sampling determines

the population to which the statistics (of the sample) make inferences. Random as-

signment determines causal inference J. O. Berger (2003). ++todo Incorporate

Feldman pg 316, 317, Freedman, 316, Diaconis, Freedman.++

Example Place Holder
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Example of incorrectly interpreting the connection

between the theoretical model and the experimental

observations; sequential auction $ \Pr \wrap{p1 < p2} \leq \frac{1}{2}$.

8.6 Alpha

The significance level (α) does not apply to any single sample.

8.7 P-value

A p-value is an estimate of the probability that a result could have occurred by

chance, if the null hypothesis were true. One thing to remember is that the p-value

is a statistic, it is a function of the data. As a result the p-value is a random

variable with a mean and a variance. It is difficult to calculate the distribution of

the p-value generally, but it is easy to calculate it under the null hypothesis: if the

null hypothesis is true, the p-value has a uniform distribution from 0 to 1.

Since the p-value is random, it might be that the two p-values that you are

comparing are not statistically different. Calculating p-values for differences in

p-values is a difficult problem, typically requiring stronger assumptions than the

problem gives. That two p-values are not statistically the same, then, is hard to

test.

To find the p-value apply a set of algebraic methods and deductive logic to

deduce the correct value. The P-value is not the probability that the hypothesis

(null) is true.

Another issue is that some procedures are more efficient than others. Typically,

efficiency is gained by making additional assumptions about the data and using

those assumptions to devise tweaks in the estimation procedure. It’s possible that

the two studies have the same estimate of the effect, but have different standard

errors, leading to different p-values simply because one study makes additional

assumptions that gets it lower standard errors.

A non-significant p-value (greater than the predetermined significance level) may

indicate (P. I. Good and James W. Hardin, 2009):

1. Used an inappropriate test statistic.

2. Sample size is too small to detect an effect.

3. The size of the effect is not statistically significant.
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If the p-value is significant it could be by chance alone. So it is always best to

remember that the p-value is a random variable used to estimate a probability. We

can only conclude that there is or is not evidence to support our hypothesis with our

data. It is important to remember: most p-values are approximations for parametric

tests based on an asymptotic distribution. ++todo Give an example.++

The p-value is uniformly distributed when the null hypothesis is true and all

other assumptions are met.Murdoch, Tsai, and Adcock (2008) Using the correct

distribution of the test statistic transforms the test statistic to a uniform p-value.

Temp R code display

The Pvalue.norm.sim and Pvalue.binom.sim functions in the TeachingDemos

package for R will simulate several data sets, compute the p-values and

plot them to demonstrate this idea.

% http://cran.r-project.org/web/packages/TeachingDemos/index.html

Under the null hypothesis, if a test statistic T has an invertible distribution F (t),

then the p-value P = F (T ) has a probability distribution:

Pr(P < p) = Pr(F
−1

(P) < F
−1

(p)) = Pr(T < t) ≡ p ,

in other words, P is distributed uniformly. This result is general: the distribution

of an invertible Cumulative Distribution Function (CDF) of a random variable is

uniform on [0,1].

A necessary condition for a distribution to be invertible is that T is not a discrete

random variable. A continuous CDF is not necessarily invertible.

To avoid this define the pseudo-inverse

F
←

(y) = inf { x : F (x) ≥ y} . (8.7.1)

See Calibration of P-values for Testing Precise Null Hypotheses, Sellke, Bayarri,

and J. O. Berger (2001).

8.8 Problems with Hypothesis Testing

The major issue with hypothesis testing is that only reporting the p-value or the

acceptance or rejection of the null hypothesis provides very little information. We

know nothing of the actual effect size, its precision, or its practical significance. It

has become a stopping point, the researcher finds significance or non significance

and does not examine the data in any detail. Granted, we cannot apply the same

strength of evidence to any curious relationship or data regularities, but it is non the
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less important. While any statistical analysis cannot be formal, confidence intervals

or other statistics can provide the strength of the possibly spurious data. “The idea

that one should proceed no further with an analysis, once a non-significant F-value

(p-value for the F-test) for treatments is found, has led many experimenters to

overlook important information in the interpretation of their data..” (Little )

8.9 Confidence Intervals

Some believe that p-values can be misleading P. I. Good and James W. Hardin (see

2009, page 131) and L. V. Jones (1955, page 407); and would be less misleading by

estimating the effect values and constructing a confidence interval.

8.10 Practical vs. Statistical Significance

Andrew Gelman has said that “the difference between statistically significant and

not is not statistically significant.” (Gelman ). Five percent is not a magical cutoff

and being a little below this value is not necessarily different from being a little

above because of the randomness of the p-value itself.

8.11 Wald Missing Data example

Example Place Holder

Returning Second World War airplanes, with bullet holes.

8.12 One or Two Sided Tests?

A subject was asked to predict whether a coin comes up heads or tails in 16 trials

(more generally choose A or B). He was correct on 13 trials; the probability of being

correct 13 or more times out of 16 trials if the he is choosing randomly is 0.0106

(from the binomial distribution). This is a one-tailed probability.

A slightly different question can be asked of the data: “What is the probability of

getting a result as extreme or more extreme than the one observed”(?). The observa-

tion of 3 or fewer correct trials out of 16 is just as extreme as the observation of 13 cor-

rect or more out of 16 trials under the null hypothesis of random choice. The proba-

bility of getting an extreme observation is Pr { 3or f ewercorrect }+Pr { 13ormorecorrect},

this probability is 0.0106 + 0.0106 = 0.0212. This is a two-tailed probability.
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Which should we use? If we ask can the subject tell the difference between A or

B, then we could ask if he was correct more than chance or if he was correct worse

than chance but in the wrong direction. We would use the two-tailed probability. If

we ask can the subject tell if A is better than B, then we would use the one-tailed

probability.

Graphic Place Holder

put in binomial graphs?

One common criticism of significance tests is that no null hypothesis is ever true.

Two population means or proportions are always unequal1 as long as measurements

have been carried out to enough decimal places. Why, then, should we bother testing

whether the means are equal? The answer is contained in a comment by John Tukey

regarding multiple comparisons: The alternative hypothesis says we are unsure of

the direction of the difference. In keeping with Tukey’s comment, tests of the null

hypothesis that two population means or proportions are equal

H0 : µ1 = µ2 or, µ1 − µ2 = 0 ,

are almost always two-sided (or two-tailed2). That is, the alternative hypothesis is

H1 : µ1 , µ2 or, µ1 − µ2 , 0 ,

which says that the difference between means or proportions can be positive or

negative.

Side refers to the hypothesis, namely, on which the side of zero the difference

µ1 − µ2 lies (positive or negative). Since this is a statement about the hypothesis,

it is independent of the choice of test statistic. Nevertheless, the termstwo-tailed

andtwo-sided are often used interchangeably.

While the most familiar test statistic might lead to a two-tailed test, other

statistics might not. When the hypothesis H0 : µ1 = µ2 is tested against the

alternative of inequality, it is rejected for large positive values of t (which lie in the

upper tail) and large negative values of t (which lie in the lower tail). This test can

also be performed with the square of the t or z statistics t
2
= F (1,n); z

2
= χ

2
(1).

Then only large values of the test statistic will lead to rejecting the null hypothesis.

1
Equal in this context means not statistically different in view the knowledge I could draw

from the samples.
2Some statisticians find the word tails to be ambiguous and use sided instead. Tails refers to

the distribution of the test statistic and there can be many test statistics.
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Since only one tail of the reference distribution leads to rejection, it is a one-tailed

test, even though the alternative hypothesis is two-sided.

Sometimes, someone claims that a difference, if there is one, can be in only one

direction,

H0 : µ1 ≥ µ2 or, µ1 − µ2 ≥ 0 ,

The alternative hypothesis states that the difference can be in only one direction

H1 : µ1 < µ2 or, µ1 − µ2 < 0 .

One-side tests make it easier to reject the null hypothesis when the alternative

is true. A large sample, two-sided, 0.05 level t-test puts a probability of 0.025 in

each tail. It needs a t-statistic of less than −1.96 to reject the null hypothesis of no

difference in means. A one-sided test puts all the probability into a single tail. It

rejects the hypothesis for values of t less than −1.645. Therefore, a one-sided test

is more likely to reject the null hypothesis when the difference is in the expected

direction. This makes one-sided tests very attractive to those whose definition of

success is having a statistically significant result.

What damns one-sided tests in the eyes of most statisticians is the demand that

all differences in the unexpected direction—large and small—be treated as simply

nonsignificant. If a large difference in the unexpected direction is observed it must

be treated the same as no difference; the one-sided hypothesis makes no distinctions.

For clinical trials Marvin Zelen dismisses one-sided tests in another way—he

finds them unethical! When comparing a new treatment to standard, anyone who

insists on a one-sided test is saying the new treatment cannot do worse than the

standard. If the new treatment has any effect, it can only do better. However, if

that is true right at the start of the study, then it is unethical not to give the new

treatment to everyone! Experimental economists are not exposed to this ethical

dilemma.

More generally, Erich L. Lehmann (2006) or Erich L Lehmann and J. P. Ro-

mano (2005) states that “One-sided error probability is appropriate only when the

direction of the difference or effect is clear before any observation has been made.”

(Erich L Lehmann and J. P. Romano (2005, page 29)) ++todo Check lehmann

comment page 309.++ In the view of some statisticians, when you test a one-

sided hypothesis “. . . recognize that if you test an after-the-fact hypothesis without

identifying it as such, you are guilty of scientific fraud.” (P. I. Good and James W.

Hardin (2009, page 21)) Using a two-sided test helps avoid data snooping or looking

like you were data snooping.

Two-sided

In a two-sided test, the tails do not be equal size, but they should be portioned

out by the relative losses associated with the possible decisions see Moyé (see Moyé,
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2000, pages 152–157) (see P. I. Good and James W. Hardin, 2009, page 79).

The two-sided test however only tests if there is a difference it does not provide

the direction of the difference. Lehmann (Erich L. Lehmann, 2006, section 1.5)

provides the connection between one-sided and two-sided (rank) tests. He derives

the following three-decision procedure

Choose B if WB ≥ c2

Choose A if WB ≤ c1

Suspend judgment if c1 < WB < c2

comparing two treatments A and B. Where WB is the Wilcoxon statistic using

the B ranks and c1 and c2 are the calculated critical values. ++todo Flesh

out.++ ++todo See also Chap 2. Sec. 2, Lehmann, for a more precise

statement.++

One Sided

A one-sided test to compare a new treatment with a standard one is strongly biased

in favor of the latter.

When testing the null hypothesis H0 : µ(new) − µ(standard) > 0 with a critical

level α, the probability is 1− α of deciding in favor of the standard treatment when

there is no difference between the two treatments. This asymmetric preference

is perhaps justified in clinical trials (medical experiments) when the new medical

procedure must have stronger proof that it is better than the standard (sometimes

called the gold standard). The asymmetry is rarely justified however in economic

experiments when there is no reason to bias in favor of one treatment.

Some have argued that a one-sided test is justified whenever the researcher

predicts the direction of an effect. The problem with this argument is that if the

effect comes out strongly the in the non-predicted direction, the researcher is not

justified in concluding that the effect is not zero. You have to be absolutely certain

of the direction of the outcome to use a one-sided test. If you use the confidence-

interval view of significance: one-sided confidence intervals do not make sense.

A one-sided test is appropriate when previous data, physical limitations, or

common sense tells you that the difference, if any, can only go in one direction. You

should only choose a one-tail P-value when both of the following are true.

• You predicted which group will have the larger mean (or proportion) before

you collected any data.

• If the other group had ended up with the larger mean—even if it is quite a

bit larger—you would have attributed that difference to chance and called the

difference not statistically significant.
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Example Place Holder

Here is an example: todo {put example}

Interpert one-sided test

To interpert the results of a one-sided test.

The selection of a one- or two-sided test must be made before the experiment is

performed, otherwise the p-value will not be correct. ++todo show math++

The issue in choosing between one- and two-sided test is not whether or not you ex-

pect a difference to exist. If you already knew whether or not there was a difference,

there is no reason to collect the data. Rather, the issue is whether the direction

of a difference, if there is one, can only go one way. You should only use a one-

sided test when you can state with certainty (and before collecting any data) that

in the overall populations there either is no difference or there is a difference in a

specified direction. If your data end up showing a difference in the wrong direction,

you should be willing to attribute that difference to random sampling without even

considering the notion that the measured difference might reflect a true difference

in the overall populations. If a difference in the wrong direction would intrigue you

(even a little), you should use a two-sided test.

If you decide to use a one-sided test, what would you do if you observed a large

difference in the opposite direction to the experimental hypothesis? To be honest,

you should state that the p-value is large and you found no significant difference.

Two-sided tests are much more common than one-sided tests in scientific research

because an outcome signifying that something other than chance is operating is

usually worth noting. One-sided tests are appropriate when it is not important to

distinguish between no effect and an effect in the unexpected direction.

You increase test power if you use a one sided test at the cost of ignoring a

difference in the opposite direction. If you got the data before you constructed your

null and alternative hypothesis’ you should use a two sided test. If you are interested

in effects in either direction you use a two tailed test. Only use a one-tailed test

when an effect can only exist in one direction.

Can we prove the null hypothesis

What you mean by “prove”. There is a rule that will accept null hypothesis has a

zero probability of making an error. This is an ideal test.

There is an ideal test if and only if the “hypotheses are mutually singular”.
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testing if a random variable X is drawn from P0 or from P1 (i.e testing H0 : X  

P0 versus H1 : X  P1) then there exists an ideal test if and only if P1⊥P0 (P1 and

P0 are “mutually singular”).

Example of mutually singular: U [0,1] and U [3,4] (uniforms on [0,1] and [3,4])

are mutually singular. This means if you want to test H0 : X  U [0,1] versus

H1 : X  U [3,4] then there exist an ideal test.

You can prove the null if and only if the proof is already in your assumptions

(i.e., if and only if you have chosen the hypothesis H0 and H1 that are so different

that a single observation from H0 cannot be identifyed as one from H1 and vise

versa).

The null and its alternatives have disjoint sets of outcomes, to B, or not to B.

8.13 Multiple Testing

Multiple testing refers the practice of testing more than one hypothesis at a time

or simultaneously testing a finite number of hypothesis H j , j = 1, . . . , k. Frequently,

somewhat inaccurately, multiple testing is called multiple comparisons or multiple

tests, which could refer to comparisons among different groupsBasso et al. (see 2009,

pages 25 and 26). All of these are included in the subject of multiple testing.

The classical approach is to maintain the probability of rejecting one or more

true null hypothesis to be less than a fixed percentage, usually given as α. A typical

procedure is the Bonferroni adjustment (a single supremum procedure). The α or

rejection region of each single hypothesis is adjusted to a common cutoff value α∗.
A hypothesis is rejected if the p-value is less than α∗, the common cutoff value. It

has been improved by various authors ++todo see basso++ :

1. Holm (1979) Holm (1979), improve with step-down.

2. Westfall and Young (1993) improve by re-sampling.

3. Westfall (1999) gives example when WY1993 fails.

4. Using a permutation-based procedure Joseph P. Romano and Wolf (2005, pro-

vides) an exact FWE control.

5. The closure method of Marcus, Peritz, and Gabriel (1976).

See also Saville (1990) and John W. Tukey (1991) and John W. Tukey (1953).

Another procedure is the FDR. In Habiger and Peña (2011) the validity of

many multiple hypothesis testing procedures for false discovery rate control relies

on the assumption that p-value statistics are uniformly distributed under the null
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hypotheses. This assumption fails if the test statistics have discrete distributions or

if the distributional model for the observables is misspecified.

You might ask, what is the difference between an experiment with three treat-

ments A, B, and C and do the comparisons A v. B, and A v. C ; and two experiments

with the treatments A,B, and A, C . Why can I have a 5 percent α for each of exper-

iment two, but the level for experiment one is less than α. There are three things,

affecting the level, that are different between the two.

The number of experimental units are different.

In experiment one the tests A v. B, and A v. C are dependent since the data

from A is the same in both. In experiment set two the tests are independent. Most

importantly, the probability of a type I error in experiment set two is the probability

of at least one type I error in the two sets of experiments. the probability of at least

one type I error is less than the stated α for each experiment.

Experiments and simultaneous inference: Simultaneous inference: When should

hypothesis testing problems be combined? Bradley Efron (2008).

8.14 Applying More Than One Test

Often two or more tests are applied to the same data; for instance, a t-test, the

WMW, and a randomization test. In P. I. Good and James W. Hardin, page 97

reminds us that “We are not free to pick and choose, we must decide before the

tests are performed.” If there is a concern that certain assumptions are not being

satisfied, then that should be determined before viewing the test results. The test

results (of your primary hypothesis) cannot determine the assumptions (see P. I.

Good and James W. Hardin, 2009).

To see how this is a problem: Let Wα be (denote) the event that the Wilcoxon

test rejects a hypothesis at the α significance level. Let Pα be (denote) the event

that a randomization test rejects a hypothesis at the α significance level. Let Tα
be (denote) the event that the t-test test rejects a hypothesis at the α significance

level. All three tests are applied to the same set of data.

From the three single tests there are eight possible reject/accept (true/false)

outcomes, for instance, Wα is true, Pα is not true, and Tα is not true. When

applying the three tests on the same data we have:

Pr {Tα or Pα or Wα | H0 } ≥ Pr {Wα | H0 } = α.

That is, we are likely to have a larger type I error by picking and choosing. It also

affects the power or type II error since

β = Pr {not {Tαand Pαand Wα} | HA } ≤ Pr {Wα | HA }.
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See P. I. Good and James W. Hardin, who P. I. Good and James W. Hardin (2009,

page 97) admonishes “that we are not free to choose among tests; any such conduct

is unethical.” In confirmatory analysis, the testing of hypothesis, conforming to

Neyman-Pearson methodology both the hypothesis and the test statistic must be

specified before examining the data.

8.15 Power of Test

An estimate of sample size is helpful when designing an experiment. You need to

know if you have enough observations so that you can be confident of you inferences.

This is typically called power analysis, which requires much stronger assumptions

than p-value calculation.

1. minimum effect size; the minimum deviation between the null hypothesis and

alternative hypothesis that you want to detect. If there is not a particular

effect size, then a graph of effect size vs. sample size.

2. Alpha α

3. Beta β: The probability of accepting the null hypothesis, even though it is

false (a false negative), when the real difference is equal to the minimum effect

size. The power of a test is the probability of rejecting the null hypothesis

when the real difference is equal to the minimum effect size, or 1 − β.
The cost to you of a false negative should influence your choice of power; the

more important detecting effect size, the higher the value for power (lower

beta), and the bigger the sample size.

4. Estimate of the SD. This can come from pilot experiments or from similar

experiments in the published literature. Unfortunately, the SD is not reported

very often.

The estimate of the standard deviation used in a power analysis is unlikely to be

the same as the estimate realized from the experimental data, so the power from

the tests used to analyze the data will not be the same as the predicted power.

For nominal variables, the standard deviation is a simple function of the sample

size, so you do not need to estimate it separately.

How Many Replications

Number of replications r, depends on the variance, size of difference want to detect

(η), α, β.
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r ≥ 2[zα/2 + z β]2(
sigma

η
)

2

(8.15.1)

where z is standard normal N (0,1).

Percent coefficient of variation (%CV):

%CV = 100(
σ

µ
) (8.15.2)

r increases if %CV increases or σ decreases, η decreases, α increases, power of test

1 − β decreases.

8.16 Power and Effect Size

See Cohen (Cohen, 1988)

Type S and Type M errors

A Type S error is an error of sign.

I make a Type S error by claiming with confidence that theta (θ) is positive

when it is negative, or by claiming with confidence that theta is negative when it is

positive.

A Type M error is an error of magnitude.

I make a Type M error by claiming with confidence that theta is small in magni-

tude when it is large, or by claiming with confidence that theta is large in magnitude

when it is small.

See here for more on Type S and Type M errors.

8.17 Power for Binomial Example

The exact binomial test as an example.

Studying wrist fractures, and your null hypothesis is that half the people who

break one wrist break their right wrist, and half break their left.

You decide that the minimum effect size is 10 percent; if the percentage of people

who break their right wrist is 60 percent or more, or 40 percent or less, you want to

have a significant result from the exact binomial test.

Alpha is 5 percent, as usual.

You want power to be 90 percent, which means that if the percentage of broken

right wrists is 40 percent or 60 percent, you want a sample size that will yield a

significant (p < 0.05) result 90 percent of the time, and a non-significant result

(which would be a false negative) only 10 percent of the time.

Graphic Place Holder



CHAPTER 8. HYPOTHESIS TESTING AND SIGNIFICANCE 74

Binomial graphs (size 50)

The first graph shows the probability distribution under the null

hypothesis, with a sample size of 50 individuals. To be significant at

the P<0.05 level, the observed result would have to be less than 36

percent or more than 64 percent of people breaking their right

wrists. As the second graph shows, if the true percentage is 40

percent, the sample data will be this extreme only 21 percent of the

time. Obviously, a sample size of 50 is too small for this experiment;

it would only yield a significant result 21 percent of the time, even

if there is a 40:60 ratio of broken right wrists to left wrists.

Graphic Place Holder

Binomial graphs (Size 270)

The next graph shows the probability distribution under the null

hypothesis, with a sample size of 270 individuals. To be significant

at the P<0.05 level, the observed result would have to be less than

43.7 percent or more than 56.3 percent of people breaking their right

wrists. As the second graph shows, if the true percentage is 40

percent, the sample data will be this extreme 90 percent of the

time. A sample size of 270 is pretty good for this experiment; it

would yield a significant result 90 percent of the time if there is a

40:60 ratio of broken right wrists to left wrists.

Post-Hoc Power Calculations

Calculating the power of a test after the data has been collected is post-hoc power

calculations. The general view is that it is a waste. ++todo See Russ Lenth’s

paper get title.++ Sometimes referees (usually misinformed) ask to see post-hoc

power calculations when they want to know how big a difference the experiment

could have detected. A confidence interval is the correct answer to their request.

As discussed by Colegrave and Ruxton and Hoenig and Heisey

What we are interested in is the description of the possible effect sizes

that are supported by the data that we have, and the possible effect sizes

that are not supported. [. . .] If the test was non-significant, then the

confidence interval for effect size will span zero. However the breadth of

that confidence interval gives an indication of the likelihood of the real

effect size being zero. (Colegrave and Ruxton, 2003).
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8.18 Sample Size

Is my sample size big enough? How many experiments do I run? Two often asked

questions. To an experimental economist they are almost never answered. The

most binding constraint on sample size is the cost of running an experiment, so the

statistically sound sample is ignored. But this behaviour is a shot in the foot. If the

sample size is not big enough you may never get a statistically significant difference,

even though one may exist.

You might think, “I can run more later if I need”. If you do, your previous type

I error is invalid. Look at the coin tossing example:

Example Place Holder

You are playing a coin tossing game with your archenemy Pozzo. The

coin is fair and the winner gets the prize, you have a fifty-fifty

chance of winning.

The coin is tossed heads your archenemy wins; you propose two out of

three (and you can enforce it). The overall chance of you winning

is no longer fifty-fifty. If you had won the toss you would not

have proposed two out of three. Pozzo is upset and will not play with

you any more.

++todo This also goes H testing.++

There are two ways to compute sample size: with the power of the test, or with

the confidence interval.

Increasing the Sample

When a hypothesis is rejected, one cause may be that the sample size was too small

to detect a significant effect. Running more experiments and merging the results

might seem to be a reasonalbe thing to do, however, there is a problem with this

approach. The probability of a type I error will be distorted.

To see this, take a simple example:
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Example 8-2

A z-test for µ = 0 with known standard deviation of one. The test

statistic z1 from the first sample has a N (0,1) distribution with CDF

Φ.

Does the second statistic z2 from a second sample that includes the

first, but—because the first uses a subset of the data used for the sec-

ond—the two statistics are correlated with correlation coefficient
√

1/2 .

Therefore (z1, z2) has a binormal distribution. The probability of a type

I error (under the null hypothesis) equals the probability that either (a)

a type I error occurs in the first test or (b) a type I error does not occur in

the first test but does occur in the second test. Let c =Φ
−1

(1− 0.05/2)

be the critical value (for a two-sided test with nominal size α = 0.05).

Then the chance of a type I error after two analyses equals the chance

that |z1 | > c or |z1 | ≤ c and |z2 | > c. The value is 0.0831178, larger than

the stated 0.05. �

Mehta et al. (see 2009).

8.19 Binomial Conf Interval Sample Size

Binomial sample size

If a quess that the probability of success is 0.3, how large a sample size is needed

so that we are 0.8 percent confident that a 0.9 confidence interval will be at most

0.1 in length.

If p = xx This simulation showed that we would need 2,200 samples to be 95%

confident that a 90% CI would be at most confidence interval width 0.010

There are only n + 1 possible outcomes for a binomial random variable, so we

can iterate for each one.

Let X be the number of successes among the n customers and let p̂ = X/n.

The confidence interval is

p̂ ± zα/2

√

p̂(1 − p̂)/n,

so the halfwidth is zα/2

√

p̂(1 − p̂)/n.

Thus we want to compute

P(zα/2

√

p̂(1 − p̂)/n ≤ 0.005).

For given p and n : compute the probability that width of confidence interval

less than 0.01.

# What is the sample size to get 90% CI of width 0.02

a <- 0.9
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target.halfWidth <- 0.01

p <- 0.03 # quess proportion

n.vec <- seq(from = 1000, to = 3000, by = 100) # sample size to simulate

prob.hw <- rep(NA, length(n.vec)) # Vector to store results

## For each sample size Loop through desired sample sizes

for (i in 1:length(n.vec)) {

## n = sample size

n <- n.vec[i] # 1000, 1100,..,3000

## Look at all possible outcomes with sample size n, x = 0

## to n possible successes

x <- 0:n

p.est <- x/n

## For each possible outcome (number of success) in

## x:0,1,..,n compute the 90% CI for the sample size n.

## For each possible X qnorm gives 95% quantile (90%

## confidence interval).

q <- 0.5 + a/2

halfWidth <- qnorm(q) * sqrt(p.est * (1 - p.est)/n)

## dbinom x, n, p = prob x success sample n w/ prob success

## p

# What is the probability that the halfwidth is less than

# 0.005? if sample 0 succ, 1 succ, then sum them

prob.hw[i] <- sum({

halfWidth <= target.halfWidth

} * dbinom(x, n, p))

}
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## Get the minimal n required ::

minn <- n.vec[min(which(prob.hw >= q))]

minn
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[1] 1100

Using the asymptotic normal approximation for the confidence interval:

p <- 0.016

n <- 2200

# X takes on values 0 no success to n all success

x <- 0:n

p.est <- x/n

## qnorm(0.95) = 1.6448

halfWidth <- qnorm(0.95) * sqrt(p.est * (1 - p.est)/n)

# confidence interval level : Coverage probability

s <- sum({

abs(p - p.est) <= halfWidth

} * dbinom(x, n, p))

s

[1] 0.9036

p <- 1/2

n <- 2

x <- 0:n

probx <- dbinom(x, n, p) # = with sample

probx

[1] 0.25 0.50 0.25

## with sample of size n, from prob success = p = 1/2 probx

## is the probability of x successes



9 Data Analysis

9.1 Arranging Your Data

9.2 Check the Data

THE first task after the data are collected is to organize your data. This entails

collecting the data from each session (hopefully in a data file, if not, then

you have an extra step). Make sure the data file from each session are in the same

format; check for obvious errors or missing data. When data are the output of from

an experimental software, output is usually in text file, or when the experiment is

run “by hand” it is easy to input data into a text file.

Master List

Then make a master list of sessions that include:

• The session number (1,. . . ,),

• session date,

• start time,

• time length of instructions,

• time length of experiment,;

• place that each session was run,

• the number of subjects,

80
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• the name of the person who ran the experiment,

• an indicator it there were any problems, and

• specific parameters of the session (e.g., information, no information).

• Original file name of the data, and

• the file names of any other information (subjects and payouts, instructions,

etc.).

The master list should hold all the information you have about the individual ses-

sions.

Type of database

If you have enormous data sets, then a SQL database would probably be the most

efficient (access time). Many of the databases are free, there is a large literature on

usages, and most statistical packages can connect to them.

The data from economic experiments are generally not so massive that a database

is necessary, the ability to share data is more important. Text files are the most

sharing-friendly, every statistical package can input text files and they also have

the advantage that they can be inspected (by UNIX less or a text editor). Special

formats such as excel files or statistical package formats are not always easy to

exchange.

Big Data

Each session is likely to have its own data file. For data analysis it is easiest to

have all the data (from all of the sessions) in one file; including a description of the

variables. To distinguish the sessions, each session should be indexed by a sequence

number and a collection date, described by variables (columns) in the data file. The

data should be arranged by rows, one row for each session and each period. Each

row should have the relevant treatment factors or values. If the data files from

the sessions are originally structured like this it makes life much easier. Here is an

example of a data file header and a few rows; taken from my experiments ++todo

Get some experiment data.++

Example Place Holder

Data file example.

Concatenating all of the data files into one large file. Adding a sequence number

or other identifier is simple with a shell or Perl script such as:
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Temp psuedo code display

Simple shell example

filelist=''file1 file2 file3''

if [ -e ``bigfile'' ] ;

then rm bigfile; # remove file so you can start clean

if

cp header.information bigfile

cnt=0;

for file in \$filelist; do

if cnt = 0; then

\$file > bigfile ### keep

else

sed 's/ /' \$file > bigfile ### remove header information

fi

done

Example2 cat file1 file2 file3 > bigfile

Temp R code display

Perl code to merger experimental data

++todo Get code from one of the experiments.++

A Perl or shell script are not the only languages. You should use a language

that you are familiar with.

The data can be analyzed in the format of the statistical package, but it is best

to have the primary data in a text file. Since we are using R here is the procedure

to input data into the program.

Temp R code display

Using R text can be easily read by.

The importance of using scripts cannot be overemphasized; it makes it easy to

redo the merging and analysis if an error is found in the data, it contains a record of

what actions you performed on the data, it allows others to duplicate your analysis.

See Appendix B.
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Initial analysis

The first analysis task is to run a DQA. That is, check the data to ensure it makes

sense: are the data in the allowable range and are data missing.

To do this look at the elementary statistics of each variable. Check the minimum

and maximum to confirm the data are in Generate box and whisker plots to check

against the predetermined ranges and to check for outliers. Check if the treatments

properly randomized to remove or reduce bias in session treatments (e.g., an order

effect). This information is easy to generate:

Temp R code display

Generate and show statistics and initial plots.

Here are some starting points, to describe one variable:

• Histogram

• Summary statistics (mean, variation, etc)

• Are there outliers? (greater than 1.5x interquartile range)

• What sort of distribution does it follow? (normal, etc)

Describe relationship between variables:

• Scatter Plot,

• Correlation,

• Mosaic plot for categorical, and

• Contingency table for categorical.

9.3 Descriptive statistics

or Summary Statistics

What is a summary or descriptive statistic? Summary statistics provide a simple

way to look at data, ++Explain More!++ . However, with small samples of

three to five observations descriptive statistics provide little information and it is

best to present all the observations.

After you have run your experimental sessions and collected all your data, your

task is to compare the observations between treatments.
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When comparing treatments it is beneficial to compare distributions.

The comparison depends on the distribution of the observations. Following

M. Kendall, Stuart, and Ord ++todo check if right volume++ — if the

distibutions are similar you may be able to simply compare summarry or descrptive

statistics. For example, if two distributions are symmetric with single mode, the

mean may be sufficient measure of central location. If the distributions are dissimilar

there may not be a single statistic that would capture the differences.

A descriptive statistic summarizes the data and the pattern of variation, sym-

metry, and skewness, it summarizes the features of a set of data.

Central Location

The two most common means are arithmetic and geometric. The arithmetic mean or

average of continuous data may be misleading when the data distribution is skewed;

the mean provides the best summary statistic when the distribution is symmetric

(for continuous data). When the data is skewed the median is usually most mean-

ingful ++todo What does this mean?++ . The median does not provide a

useful summary statistic when the data are discrete or grouped see Chapter 12. The

geometric mean is ++todo Define++ . From P. I. Good and James W. Hardin

(2009, page 125) the geometric mean is more appropriate than the arithmetic in

three sets of circumstances:

1. When losses or gains can be best explained as a percentage.

2. When rapid growth is involved.

3. When the data span several orders of magnitude.

The mean and median are measures of central tendency. The median is resistant

to outliers and mean is sensitive to the data. If the distribution is symmetric and the

(tails are not too thick) then the mean is an efficient summary of central location,

the median is less efficient. ++todo Find site info, and what is thick, 4th

expected.++

The median of an empirical distribution is has the property of mitigating ++todo

correct word++ the effect of a skewed distribution (outliers may be symmetric

and balanced) However it is not always a reliable estimator of central location or in

tests of the differences between empirical distributions. The most obvious case is its

use in categorical ordinal data; which will be discussed in section §11.12. The point

I am making—that using the median does not always protect you from making

bad inferences; the median does not automatically mean that you have a robust 1

measure.

1Robust to variation or divergence what is right word? in assumptions.
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Arithmetic mean x = 1
n

∑

xi minimizes
∑

(
(x−µ)

σ
)

2

Median minimizes
∑| (x−µ)

σ
|

Trimmed mean - 100α% trimmed mean : order the data and discrd the lowest

100α% and highest 100α% and take the arithmetc mean. α of 0.1 to 0.2 is usually

recommended.

M-estimates P. Huber 1981 Robusy Ststistics NY Wiley. minimizes
∑

φ(
(x−µ)

σ
)

If the distrbution is symmetric then all are very close, otherwise there is little

guidance in the literature. D. Andrews P. Bickel et al Robust Estimates of Location

Princeton, NJ Princeton University Press

The mode of an emprical frequency function has a local maximum at value x.

++todo get better definition++

Empirical distribution function

The empirical cumulative distribution function ECDF for data x1, . . . , xn is Fn (x) =
1
n

(#xi ≤ x) also written

F (x) = 1
n

∑n
i=1 I(−∞,x)(x

i
) where I(−∞,x)(x

i
) = (1, xi ≤ x0, xi > x)

Properties

The random variable I(−∞,x)(x
i
) has a Bernoulli distibution with p = F (x);

nFn (x) ∼ Binomial with n trails and p = F (x);

E[Fn (x)] = F (x);

Var[Fn (x)] = 1
n

F (x)(1 − F (x));

the distribution of maxx [Fn ()x−F (x)] does not d3epend on F (BickelBoksum1977

).

The ecdf function applied to a data sample returns a function representing the

empirical cumulative distribution function. For example:

Temp R code display

X = rnorm(100) \# X is a sample of 100 normally distributed random variables

P = ecdf(X) \# P is a function giving the empirical CDF of X

P(0.0) \# This returns the empirical CDF at zero (should be close to 0.5)

[1] 0.52

plot(P) \# Draws a plot of the empirical CDF (see below)

The empirical CDF evaluated at specific values:

> z = seq(-3, 3, by=0.01) \# The values at which we want to evaluate

the empirical CDF

> p = P(z) \# p now stores the empirical CDF evaluated at the valu
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Trimmed mean

Trimmed mean cuts pieces off of each tail of the data distribution. If the percentage

is 100α% trimmed mean then α% are cut off the ends. The process is to order the

data; discard the he lowest 100α% of the data and the highest 100α% of the data;

then take the arithmetic mean. A range of 0.1 to 0.2 is generally recommended for

α. Also called Winsorized mean ++todo check spelling.++

Hodges-Lehmann

An efficient measure of central tendency is the Hodges-Lehmann estimator of central

tendency, i.e.,, the median of all pairwise means. In R it can be computed by:

Temp R code display

w <- outer(x, x, '+')

hl.est <- median(w[row(w) >= col(w)])/2

The ICSNP package in R has a fairly efficient implementation with its hl.loc func-

tion.

M-estimates

P. J. Huber (P. J. Huber, 1981) defined a class of measures of central location he

called M-estimates. An M-estimate θ̂ minimizes

n
∑

1

Φ *
,

xi − θ̂
σ

+
- .

Huber’s estimates from the 1970s are robust, in the classical sense of the word:

they resist outliers Peter J. Huber, 2002; A. D. Freedman, 2006, see.

These descriptive statistics are not useful (convey information) in all situa-

tions. They are most powerful when the empirical distribution of the observed

data ++todo Redundant++ is single peaked or has a single mode. Statistics

like the mean and median (perhaps with the empirical variance) provide for efficient

tests. When at least one of the empirical distributions you are testing is not single

peaked then these measures lose their power. ++todo Example, Proof++

When observations are sampled from distributions with thick tails ++todo

whatever that means++ the median is a more efficient (better) description of

the central location. We cannot always compare a sample statistic, like the mean or

median, to the population mean, since the population mean does not always exist,

see for example §D.1.
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To illustrate we will look at the areAREasymptotic relative efficiency of the

sample means and medians from the Student-t distribution. The Student-t distri-

bution provides a good example since the tails go from thick to thin as the degrees

of freedom increase.

The median compared to the mean for samples from a Student-t distribution (the

Asymptotic Relative Efficiency (ARE) on the vertical axis) for increasing degrees

of freedom (d f on the horizontal axis).

Graphic Place Holder

http://www.johndcook.com/Cauchy_estimation.html

As the degrees of freedom increase the ARE decreases; the sample median be-

comes less efficient ++todo define++ compared to the sample mean.

The curve crosses the top horizontal line at 4.7. For degrees of freedom less than

five the median is more efficient. For larger values the mean is more efficient.

Mean, median, mode are easy to compute when data is continuous (there are no

ties). When data are grouped or binned the definitions are not as straight forward

and sometimes the values are not unique.

Which to use, mean or median?

For categorical (nominal) data (red, white, blue) where the data do not have a

natural order, neither the mean nor median make sense.

If the data are categorical ordinal (smaller, small, big, bigger) then the difference

between small and smaller and the difference between big and bigger may not be

equal and may not even make sense; so we do not have interval data. In this case

does the mean make any sense; why not? Are there technical reasons and not

just chit chat? The median may seem more appropriate but does it supply a good

estimate (description) of central location.

Outliers

We all know an outlier when we see one; but it is difficult construct a mathematically

rigorous definition of an outlier. In an experimental setting, an outlier depends on

the experiment. Outliers are in the data when something happens to the process

generating the data or collecting the data. For example:

• Computer or data recording errors.

• Subject disruption.

• Subject input errors.
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• Natural disasters (e.g., earthquake).2

In general outliers can be caused

1. Error,

2. Non-homogeneous population; two sets of data that should not be pooled,

3. high variance population; need a larger sample.

If there are extreme values, often called outliers, then the mean can be, if not

exactly wrong, then certainly misleading.

If you are figuring the average height of a group of college students, and your

sample happens include the center on the basketball team, who is 7’2 tall, then your

average will not be a very good representation of the real average height at your

school.

You should investigate every outlier; this is subjective and depends on your

knowledge of the experiment design and implementation. If the outlier cannot be

explained by something similar to 9.3, then the outlier is an indicator that there

is something you do not understand about the data generating process. So by

studying the outlier you can improve your knowledge and improve your model of

the generating process.

Throwing out the outlier might give you a non-representative sample.

If you can explain the outlier by an event outside of the planned experimental

process, then the usual procedure is to remove it from the data set. One convenient

procedure is to use a dummy variable; outlier = 1 for your outliers and outlier = 0

for all others.

You must be aware that the existence of an outlier may affect the observations

that in that experimental session. So the conditions in treatments are no longer the

same. If the outlier occurred randomly it may not be a concern, but if the outlier

was due to an experimental error that was corrected for the following experimental

sessions.

Formal Tests

The theory of univariate outlier detection assumes that the data are normally dis-

tributed and outliers are with respect to the normal observations. Both Grubbs’

test and Dixon’s ratio test use this construction. See the American Statistician “A

Note on the Robustness of Dixon’s Ratio test in Small Samples” “[. . .] for really

small samples of size 3 to 5 the test maintains its significance levels for a variety of

non-normal distributions. It has often been used with running samples of size 3 as a

2This is not imaginary, especially if you live in California.



CHAPTER 9. DATA ANALYSIS 89

screening procedure.” ++todo Check if quote from paper.++ Two problems

with trying to detect outliers are the masking problem and heavy-tailed distribu-

tions. See Barnett and Lewis Outliers in Statistical Data (Barnett and Lewis, 1994)

and Douglas Hawkins monograph on outliers (Hawkins, 1980). Robust statistics fo-

cus on estimates that match most of the data but not all. ++Find ref Robust

on most of data.++

Measure of Variation, Measures of dispersion

Rice describes Measures of dispersion, or scale gives a numerical indication of scat-

terness of a set of numbers.

The population variance s
2
=

∑

(x
i
−x)

2

n
is a measurement of dispersion of a set of

numbers.

s
2
=

∑

(x
i
−x)

2

n−1 is an unbiased estimate of the population variance.

s
2
=

√

∑

(x
i
−x)

2

n
is not an unbiased estimate of the population standard deviation,

sice the square root function is nonlinear.

The usual measure of variation, spread, dispersion is the variance (σ2). The sd

is the square root of the variance, it has the same unit of measurement as the mean.

The definition of the population variance, with size n and mean µ is

σ
2
=

∑

(x − µ)2

n
.. (9.3.1)

There are many estimators of population variance. For a sample x1, . . . , xn the

simple list is

S0 =

∑

i (xi − x)
2

n
, (9.3.2)

S1 =

∑

i (xi − x)
2

n − 1
, (9.3.3)

S2 =

∑

i (xi − x)
2

n + 1
. (9.3.4)

S1 is unbiased but S2 has lower squared error. Other estimators are ++todo

define and explain++ .

A robust estimator is Gini’s mean difference, 98 percent as efficient. ++todo

define and give conditions.++ The mean absolute difference between any two

observations.

9.4 More robust

The interquantile range (IQR) is the difference between the 25th and 75th per-

centiles.
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Mean absolute deviation from the median (MAD) x̃ is the median. The MAAD

is the median of the numbers |xi − x̃ |.

Remark 9-1

for an estimate of σ for the nomal distributio are IQR

1.35
MAD
0.675 . �

for method of confidence interval See H David 1981 Order Statistics. NY Wiley.

Kurtosis and Skewness

Joanes and Gill (Joanes and Gill, 1998) discuss three methods for estimating the

kurtosis of the distribution of a set of data:

1. g2 =

(

m4/m
2
2

)

− 3. This is the typical definition.

2. G2 =
(

(n + 1)g2 + 6
)

(

n − 1

(n − 2)(n − 3)

)

. Only G2 is unbiased under normality.

3. b2 =

(

m4/s
4
)

− 3 = (g2 + 3)(1 − 1/n)
2 − 3.

where µ is the mean, s is the standard deviation, and mr =

∑

i
(x

i
−µ)

r

n
are the sample

moments of order r for a data set of size n (note s = m
1
2

2
).

They (Joanes and Gill, 1998) also three methods for estimating skewness:

1. g1 = m3/m
3
2

2
. This is “Pearson” skewness— the standardized third central

moment.

2. G1 =
g1

√
n(n − 1)

n − 2
.

3. b1 = m3/s
3
= g1((n − 1)/n)

3
2 .

All three skewness measures are unbiased under normality. ++todo Check

other skewness definitions.++

Zero skewness does not imply that the distribution is symmetric nor does sym-

metry imply that the third central moment is zero3.

An asymmetric distribution with mean, median, mode equal to zero:

Temp R code display

3The Cauchy distribution is one example
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x <- (-3,-1,0,1,2)

p <- (1,18,72,13,4)/108

# calc skew with data x

skew <- sum((x-mean(x))^3)/(length(x) * sd(x)^3),

# calc skew with density p over x

skew <-

density plot

Relation Between Mean, Median, Mode

Let µ be the mean (, average), m the median, σ one standard deviation, M the

mode, sgn() the sign function and X a (random) data set.

In many introduction statistics books a relation between the median, mode, and

mean is given, for example:Hippel (2005) “For skewed distributions, the mean lies

toward the direction of skew (the longer tail) relative to the median.” (A. Agresti

and Finlay (1997)).

And “In a skewed distribution [. . .], the mean is pulled in the direction of the

extreme scores or tail (same as the direction of the skew), and the median is between

the mean and the mode.” (Thorne and Giessen (2000)).

Graphic Place Holder

illustration of the relationship between skew, mean, median, and

mode. The skew is to the right, chi-sq w/ 3 df

Show skewed distribution with

images/vonhippel_figure.gif

mode < median < mean

Temp R code display

Skewness and unimodality need not imply a particular ordering of

measures of location. The binomial (n = 10, p = 0.10) distribution,

as suggested by Eisenhauer~\citep{eisenhauer2002} is right-skewed.\

Verify that the mean is 1 by computing np. The simple calculations

Pr(X = 0) = 0.9^10 = 0.3486 and Pr(X = 1) = (10)(0.1)(0.9^9) =
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0.3874 are enough to deduce that the mode and the median are also

equal to one.

The relationship does not always hold if the distribution is discrete or continu-

ous. There are fewer violations if the distribution is continuous see Basu and Das-

Gupta (Basu and DasGupta, 1997) for an explanation. “For a unimodal distribution

on the real line, [. . .] This article explicitly characterizes the three dimensional set

of means, medians, and modes of unimodal distributions. It is found that the set

is pathwise connected but not convex. Some fundamental inequalities among the

mean, the median and mode of unimodal distributions are also derived.” (Hippel

(2005)).

Graphic Place Holder

1 , 1100

2, 1400

3, 200

4, 50

5, 10

skew to right mean < mode = median

also Poisson distribution , \mu = 0.75, skew to the right,

mean < median.

Because of its discrete nature the median does not divide the distribution into

two equal parts, 38 percent are to the left of the median, 49 percent coincide with

the median, 13 percent are to the right of the median. Hippel, 2005; Basu and

DasGupta, 1997 give more detail, Hippel (2005) gives some continuous examples.

Another rule of thumb, (Mean − Mode) less than 3 (Mean − median) also fails.

This is the usual proof, but there are some hidden assumptions: ++todo is

the following correct++ .

‖µ−m‖ ≤ σ well known (9.4.1)

‖µ− M ‖ < 3σ Chebyshev’s inequality (9.4.2)

sgn(µ− M) = sgn(µ−m) (9.4.3)



CHAPTER 9. DATA ANALYSIS 93

‖µ−m‖ = ‖E(X −m)‖ (9.4.4)

≤ E‖X −m‖ (9.4.5)

≤ E‖X − µ‖ = E

√

(X − µ)2 (9.4.6)

≤
√

E(X − µ)2
= σ (9.4.7)

The first equality derives from the definition of the mean.

The third comes about because the mean is the unique minimiser (among all

c’s) of E‖X − c‖.
The fourth from Jensen’s inequality (i.e., the definition of a convex function).

Chebyshef’s inequality states that:

P(|X − µ| > α) ≤ σ
2

α
2

(9.4.8)

.

The lesson here is— do not use rules of thumbs, unless you know there scope.

Quartiles

There are over a dozen ways to compute quartile values Langford (Langford, 2006)

http://www.amstat.org/publications/jse/v14n3/langford.html examine the various

methods and offer a suggestion for a new method which is both statistically sound

and easy to apply.

What is the difference between quantiles and quartiles?

The iqr range (the width of a range which holds 50 percent of data, but it is

not centered in median— one needs to know both Q1 and Q3 to localize this range.

It is a scalar which measures the Q2–Q3 interval.

The IQR measures the spread of the data, it is similar to the standard deviation,

but it is not equal to it. Some statisticians describe it a nonparametric version of

the standard deviation of a distribution; but I think that is misleading, both can be

measured in an empirical frequency distribution.

Graphic Place Holder

picture examples.
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Percentages and Rates

A seven percent difference between 97% and 90% is not the same as a 7 percent

difference between 14% and 7%. It does not indicate greater disparity since success

rates 97% and 90% imply a failure rate of 3% and 10%. Use the odds ratio to avoid

the asymmetry. In this example compare 97/3 = 32.2 and 90
10 = 9 and 93/7 = 13

and 86/14 = 6. Get more of a discussion from Agresti (A. Agresti and Coull, 1998),

describe test for binomial.

Taking the mean of rates can be misleading.

++todo Make econ exp example.++ For example, suppose I drive to

work at a constant speed of 60 miles per hour and drive home at 40 miles per hour,

over the same route. The average speed is not
60 + 40

2
= 50. To find the average

speed an additional piece of information is needed; the number miles to work, e.g.,

60. At 60 miles per hour the trip to work is one hour long, and at 40 miles per hour

the trip home is one and a half hours long; total time is 2.5 hours to drive 120 miles.

So
120

2.5
= 48.

Correlation Measures

Measuring a correlation coefficient.

Pearson Correlation

Pearson correlation measures the degree of linearity and will be 1 or −1 if the data

are on a straight line.

Spearman Rho

Spearman’s rho is a Pearson correlation on the ranks of the data. Is measures the

tendency for both variables to increase together or the tendency of one variable to

decrease while the other variable increases. ++todo Language.++

Use with ordinal data.

(Ranking makes sense for ordinal data).

9.5 Statistical Tests

Two Sample Test

The most common test for comparing the mean of two treatments is the t-test. The

t-test provides exact significance levels (not approximate) if all the observations are

independent. Under the null hypothesis all the observations come from identical

normal distributions. The t-test is robust against nonnormal distributions and the

significance of the t-test is almost exact if the sample sizes are greater than 12.

++todo How far off.++
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For normally distributed data, the Student t-test is the most powerful test. The

two sample permutation test for location is reasonably efficient for normal popula-

tions and often more powerful for non-normal populations when compared to the

t-test.

For testing against nonnormal alternatives, the randomization test, replacing

observations by their normal scores ++todo what is the correct name of

this test++ is more powerful than the t-test (see Erich L Lehmann and J. P.

Romano, 2005, pages 203–213 on robustness). ++todo Correct page cite.++

For specific normal alternatives, ++todo such as++ this test provides a most

powerful unbiased test of the distribution-free hypothesis that the centers of the

two distributions are the same Erich L Lehmann and J. P. Romano (page 239

2005). Against other distributions with the appropriate choice of the test statistic,

its power can be superior lambert 1985, maritz, 1996, from good.errors.2009 page

77.

The t-test has more power than other tests (e.g., rank tests) than it is given

credit. !!->TODO->Find comparison results.<-<-

A sufficient (but not necessary) conditioon for the t-test assumes each group is

normally distributed with equal variance. This is the same as a linear regression

with a binomial dependent variable (a zero-one dummy variable); the analysis is

conditional on the residuals being distributed normal with zero mean.

If the variances of the two distributions are not the same, then neither the t-

test nor the randomization test yield exact significance levels. When the variances

cannot be assummed equal the two-sample problem becomes the Fisher Behren’s

problem, and Welch’s test or a Bayesian solution usually has better properties. 4

The basic assumptions are:5

• Observations are sampled independently. ++todo Check if ttest and

ftest have same independence assumption.++

• Variances are equal (homogeneity), unequal variances are called homocedastic.

• The sample means have a normal distribution (if the observations have a

normal distribution then this is assured).

There are two common two-sample t-tests: the non-pooled variance (Welch

version) and pooled variance.

4different tests will have different better properties
5These are the same assumptions for ANOVA.
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Remark 9-2

The pooled-variance t-test was considered standard, now the non-pooled

test is considered standard. �

++todo Find cite?++

Temp R code display

t.test(extra~group, data = sleep)

The F-test is a poor way to justify pooling, because it F-test is not robust

against non-normality. ++todo Is this now considered true?++ “George

E. P. Box, 1953 ”.To make a preliminary test on variances is rather like putting

to sea in a rowing boat to find out whether conditions are sufficiently calm for an

ocean liner to leave port.

When the samples are of equal size the t-test is robust against departure from

the homoscedasticity assumption; if n1 , n2, then the probability of a type I error

will be lower than stated if the larger standard error is associated with the larger

sample, and vice versa. ++todo Check on this?++

Tests for the two-sample problem also apply to testing the independence of two

random variables X and Y ; { X } and {Y }. Testing for independence is the same

as testing if two distributions are the same; that is, testing if the joint distribution

{ PX×Y } for {(X,Y ) } and the product distribution { PX × PY } are the same.

Let P and Q be distributions and we observe two independent groups of data

(observe two independent samples): X1, . . . ,Xn ∼ P and Y1, . . . ,Ym ∼ Q. The problem

is to test the null hypothesis (H0):

H0 : P = Q (9.5.1)

versus the alternative hypothesis

HA : P , Q . (9.5.2)

The types of tests we will consider define a function T : (P ×Q) →ℜ. T is a function

of the data. H0is rejected if if T > t for some critical value t. We choose t such that,

if H0is true then

W (T > t) ≤ α (9.5.3)

where W is the distribution of T when the H0is true.

How do we find the distribution W of T under the null hypothesis (H0)?

There are four basic methods:
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1. Derive W analytically explicitly.

2. Derive the large sample limit of W and use it as an approximation.

3. Bootstrapping.

4. Permutation, randomization testing.

To do a statistical test you need

1. the probability distribution of the test statistic or a method to compute the

p-value,

2. the values of the test statistic that are considered significant or extreme,

3. the alternatives against which the hypothesis are to be tested.

There are four ways to find the distribution of the test statistic.

The first of these the computation of the (the probability distribution) is difficult

to compute.

Usually, a distribution function cannot be directly calculated. Alternatives have

been devised, notably asymptotic approximations, the bootstrap, and randomiza-

tion procedures. Some nonparametric tests have been considered as alternatives

because the distribution function is relatively easier to compute. The bulk of the

work in hypothesis testing is finding ways to compute the p-value.

The basic tests of the effects of treatments:

• differences: means

• ratios: likelihood ratios

• categorical data: odds ratios.

Standard Error, Estimates, Estimators

The standard deviation is a property of the (distribution of a) random variable.

Standard error is related to a measurement on a specific sample.

Let θ be your parameter of interest for which you want to make inference, a

sample of observations

x = { x1, . . . , xn }.

θ̂(x) is an estimate of θ. θ̂(·) is a random variable called an estimator.

The standard error of an estimate θ̂(x) of θ is the standard deviation of the

random variable θ̂. Standard deviation describes the variability of the individual

observations while standard error describes the variability of the estimator.
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The standard error of the sample mean is σ/
√

n where σ is the standard devi-

ation and n is the sample size

The standard error of the sample standard deviation from a normally distributed

sample of size n is

s ·
Γ ( n−1

2 )

Γ (n/2)
·

√

√

√

n − 1

2
− *,
Γ (n/2)

Γ ( n−1
2 )

+
-

2

.

There may be no relationship between the standard error and the population

standard deviation. For example, if X1, . . . ,Xn ∼ N (0,σ2
), then number of observa-

tions which exceed 0 is Binomial(n,1/2). Its standard error is
√

n/4 , regardless of

σ.

Testing Binomial and Poisson

The optimal test for comparing two binomial distributions is Fisher’s Exact Test and

the optimal test for comparing two Poisson distributions is based on the binomial

distribution (see Erich L Lehmann and J. P. Romano, 2005, Chapter 5, Section 5).

here’s what R’s prop.test (Test of Equal or Given Proportions) says:

Temp R code display

> p = c (0.559, 0.555)

> n <- c(16753, 5378)

> n*p

[1] 9364.927 2984.790

> prop.test (round (n*p), n)

2-sample test for equality of proportions with continuity correction

data: round(n * p) out of n

X-squared = 0.2437, df = 1, p-value = 0.6215

alternative hypothesis: two.sided

95 percent confidence interval:

-0.01141974 0.01935036

sample estimates:

prop 1 prop 2

0.5590044 0.5550390

Testing Equivalence

To show similarity rather than differences, equivalence tests can be more effective

than no-effect null hypothesis tests from P. I. Good and James W. Hardin (2009,

page 79), see Anderson and Hauck, 1986; Dixon, 1998, pages 257–301.
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First how large a difference is acceptable for you to still conclude that the two

groups are effectively equivalent.

Testing for equivalence, In equivalence testing, the test flips the usual null and

alternative hypotheses.

Two distributions, F and G, such that G(x) = F (x − δ) are said to be equivalent

if |δ| < ∆, where ∆ is the smallest practical significance between treatments. Reject

equivalence if the confidence interval for δ contains values larger than |∆|. ++todo

Difference?++

Operationally, equivalence may be established with a pair of one sided hy-

pothesis tests.
Test 1 : H0: δ < −∆ versus HA: δ > −∆
Test 2 : H0: δ > ∆ versus HA: δ < ∆

++todo See

lehmann?++ If we reject both tests, then we establish that |δ| < ∆.
For equivalence testing you want to show that your drug perform similarly to the

competitor drug. This is often done when trying to find a generic replacement for

a marketed drug. You define a small distance from zero that you call the window

of equivalence and you reject the null hypothesis when you have high confidence

that the true mean difference in the performance measure is within the window

of equivalence. The method is well defined in Bill Blackwelder’s paper ”Proving

the Null Hypothesis.” The test statistics are the same or similar it is just executed

differently. For example instead of using a two-tailed t-test to show that the mean

difference is different from 0, you do two one-sided t-tests where you need to reject

both to claim equivalence. The sample size is determined such that the power of

rejecting nonequivalence when the actual mean differnce is less than some specified

small value.

The CONSORT guidelines for non-inferiority/equivalence studies are useful (Pi-

aggio et al., 2006).

TOST can be achieved by looking at the confidence intervals obtained by inter-

secting the two one sided confidence intervals that correspond to the two one-sided

t tests that are used in the procedure.

Other Two Sample Tests

Unequal variances

The t-test, the Wilcoxon-Mann-Whitney (WMW), randomization tests, and most

others will not provide exact significance levels if the populations from which the

observations are drawn do not have equal variances. For the t-test (a parametric

test) the distributions two must be the same under the null hypothesis; or a ran-

domization test the two distributions ++todo correct wording++ must be

exchangeable.

The Behrens-Fisher problem is the problem of unequal variances in treatment

groups. See P. I. Good and James W. Hardin (2009, page 80). Recall that in all
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the testing we have discussed, parametric, rank, asymptotic, and randomization;

similar data distributions of the treatment groups is assumed. If the variances of

the treatment groups are unequal then we cannot apply most of the those testing

proceedures. ++todo Does this apply to categorical, discrete chisquare

tests?++ Goodness-of-fit tests are not affected.

There have been many suggestions, for example, Brunner and Munzel (2000)

proposed a rank test for the Behrens-Fisher.

Phillip Good conducted simulations of the permutation test for normally dis-

tributed populations with variances that differed up to a factor of five. Nominal

p-values of 5 percent were accurate to within 1.5 percent for samples of six and

twelve drawn from the normal distribution. ++todo What is the source,

good.errors.2009 does not give one.++

We can use the bootstrap confidence interval for the difference of the two means,

since the bootstap simply requires that the means of the two populations are equal

under the null hypothesis, P. I. Good (2006, page 46) shows how this is done by

drawing seperate bootstrap samples from each set of observations. He cites B. Efron

and R. Tibshirani (1993, page 11),

Hilton Hilton (1996) compared the power of the Wilcoxon test, the O’Brien 1988

test, and the Smirnov test. As the relative influence of the difference of variances

grows, the O’Brien test is most powerful, the Wilcoxon test loses power and if the

variance ratio is 4 to 1 4 : 1 the Wilcoxon test is not trustworthy.

As P. I. Good and James W. Hardin (2009, page 80) and William Anderson

(source) write “The first issue is to try and understand the reasons behind why the

variances are so different.” David Salsburg (cite) gives two reasons why:

• The range of possible outcomes may be different in different treatments, and

if some treatments are more effective or less effective than others, then the

observed outcomes may be gathered at the extremes affecting the variance.

• The mixture of subjects may be different in the different treatments. If one

treatment has more first year business majors or more engineering majors,

cognitive abilities may be different, affecting the variance of the observed out-

comes. See Conover and Salsburg 1988 W. Conover and Salsburg (1988),

good.err.

The Welch t-test.

Comparing Variances

There have been many tests devised for testing the difference between to variances.

All of them lack in some way P. I. Good and James W. Hardin (see 2009, page 85)

and the cites within.
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Levene’s Test tests the null hypothesis that the variances are equal and has the

nice property that it is robust to non-normality of the data. If the sample size is

small, detecting a difference has low power, so even if the variances are different you

may fail to reject the null hypothesis.

Bayesian T-test

A Bayesian t-test (Savage-Dickey ratio test) for unequal and unequal variances is

simple (and fast) to implement, see Wetzels et al. (2009, see) for an implementation

and a tutorial on how to do this in R with example data: http://www.ruudwetzels.

com/index.php?src=SDtest.

better test

Using a more powerful test reduces the cost of experimentation and minimizes the

risk ++todo Of What?++ . See good resample guide 2006, page 22, chap 2.

9.6 Test for Normality

“Everybody believes in the exponential law of errors [i.e., the normal distribu-

tion]: the experimenters, because they think it can be proved by mathematics; and

the mathematicians, because they believe it has been established by observation.”

(Whittaker and Robinson (page 179 1967)). Maxwell and Delany (page 51 Maxwell

and Delany, 2004) state that in 1873, C. S. Peirce may have been the first to refer

to the mathematical formula of the normal curve; See also Stigler and Kruska, 1999,

p. 411. ++Find ref Stigler and Kruska++ .

To test if a data set is normal Sachs (Sachs, 1984, page 323), gives a rule of

thumb: a data set x is normal (or close to) if

0.9<
x̃

x
< 1.11

3sx<x

where

x̃ is the median ,

x is the mean, and

sx is the standard error .

The usual tests for normality are not recommended, instead graphical methods are

recommended (as a part of EDA). ++todo Add more.++

Standard tests in R are:

Temp R code display

http://www.ruudwetzels.com/index.php?src=SDtest
http://www.ruudwetzels.com/index.php?src=SDtest
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shapiro.test(data)

ks.test(data, "norm", mean=mean(data), sd=sqrt(var(data)))

See Hazelton (2003), M. C. Jones (2004), and M. C. Jones and Daly (1995).

++todo Check Koenker (2009).++

Visual tests in R for the qq-plot

Temp R code display

qqnorm(),

qq.plot() in the car package.

Transforming Data

The Box-Cox family of power transformation can normalize residuals or data that

are on a non-linear scale.

Multivariate Normal

With univariate data the quantile-quantile (Q-Q) plot is a useful tool to assess uni-

variate normality. When the data are multivariable, plot the squared Mahalanobis

distances versus quantiles of the χ2distribution with p degrees of freedom, where p

is the number of variables in the data.

Temp R code display

An R example.

Even though a multivariate normal distribution implies that the individual

variables are normally distributed, it does not hold true for the converse xi ∼
N for all i does not imply (x1, . . . , ) is multivariate normal. So testing the individ-

ual variables for normality will not indicate multivariate normality. Mardia (Mardia,

1974) proposed tests of multivariate normality based on sample measures of mul-

tivariate skewness and kurtosis. (See von Eye and Bogat (2004) for an overview).

++Find ref von Eye and Bogat (2004).++

For multivariate normal data, Mardia shows that the expected value of the

multivariate skewness statistic is

p(p + 2)[(n + 1)(p + 1) − 6]/(n + 1)(n + 3) (9.6.1)
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and the expected value of the multivariate kurtosis statistic is

p(p + 2)(n − 1)/(n + 1) . (9.6.2)

++todo Get mardia notation.++

The Henze-Zirkler test of multivariate normality is based on a non-negative

function that measures the distance between two distribution functions and is used

to assess distance between the distribution function of the data and the multivariate

normal distribution function.

Univariate normality is tested by either the Shapiro-WilkW test or theKolmogorov-

Smirnov test. The univariate Shapiro-Wilk W test is a very powerful test.

If the p-value of any of the tests is small, then multivariate normality can be

rejected. You should be careful not to reject normality too easily when the methods

are robust to departures from normality.

What is a normality test for:

The question normality tests answer: Is there convincing evidence of any deviation

from the Gaussian ideal? With moderately large real data sets, the answer is almost

always yes.

The question scientists often expect the normality test to answer: Do the data

deviate enough from the Gaussian ideal to forbid the use of a test that assumes a

Gaussian distribution?

Scientists often want the normality test to be the referee that decides when to

abandon conventional tests (ANOVA, t-tests, etc.) and instead analyze transformed

data or use a rank-based nonparametric test or a resampling or bootstrap approach.

For this purpose, normality tests are not very useful.

Example of rejection normal distributions

Let me illustrate with the Shapiro-Wilks test. If you construct an almost-normal

distribution and do a small simulation, you get more or less following results in R:

Temp R code display

x <- replicate(100,{# generates 100 different tests on each distribution

c(

shapiro.test(rnorm(10) +c(1,0,2,0,1))$p.value, # $

shapiro.test(rnorm(100) +c(1,0,2,0,1))$p.value, # $

shapiro.test(rnorm(1000)+c(1,0,2,0,1))$p.value, # $

shapiro.test(rnorm(5000)+c(1,0,2,0,1))$p.value # $

)

} # rnorm gives a random draw from the normal distribution
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)

rownames(x)<-c("n10","n100","n1000","n5000")

rowMeans(x<0.05) # the proportion of significant deviations

n10 n100 n1000 n5000

0.04 0.04 0.20 0.87 # percent/100 of cases test decides not normal

The qq-plots “look normal”; below is a qq-plot for a single set of n10 and n1000

data.

Temp R code display

Do qq-plotts.

Adding to alpha-error accumulation

Performing a normality test without taking its alpha-error into account heightens

your overall probability of performing an alpha-error (for entire data analysis). con-

trol for alpha-error accumulation. Hence, another good reason to dismiss normality

testing.

Why not use

For small samples, normality tests do not have enough power to pick up deviations

from normality. For large samples, many tests, for example the t-test and ANOVA

are robust to non-normality ++Find ref nonnormal ttest++ .

The whole idea of a normally distributed population is a convenient mathemat-

ical approximation.

None of the quantities typically dealt with statistically could plausibly have

distributions with a support of all real numbers.

People cannot have a negative height or mass or more mass than there is in the

universe.

9.7 Randomization Test Procedure

For almost every parametric or nonparametric test you can devise a ++todo

see good: prac guide pg 1++ randomization counterpart. Randomization

tests are also called permutation tests and exact tests, though this is incorrect as

a randomization test is not necessarily exact. ++todo See exact good: chap

6.++ Fisher (Ronald A. Fisher, 1935a) and Pitman Pitman (1937) and Pitman

(1938) were among the first to introduce randomization tests. ++todo Fisher



CHAPTER 9. DATA ANALYSIS 105

Cite 1966, Chap 3, first ed 1935.++ See Edgington (Edgington and Onghena,

2007) for distinction between permutation and randomization tests.

Randomization tests apply to the sample at hand; and are generally not used to

make inferences to larger populations. Pitman (Pitman, 1937) inductively applies

to larger the larger population from which the sample is drawn. ++todo Check

if true.++

++todo What characterizes tests that do not have a randomization

counterpart?++

Randomization tests are intermediate between rank and normal theory tests,

they use the observations (not the ranks), they do not assume a sampling population

(meaning a probability distribution). The probability structure is based on random

assignment. Randomization tests do not have the same power as rank tests when

there are outliers. ++Find ref Power rank randomization.++

For the permutation test to be valid, you need exchangeability under the null hy-

pothesis; this means that their joint distribution under the null hypothesis remains

unchanged when the labels are rearranged.

If all distributions have the same shape (and are therefore identical under the

null hypothesis), this is true. If the data is independent and identically distributed

(IID); IID implies exchangeability.

Note: the randomization test cannot be used for any test.

When applying randomization and permutation test to large samples it usually

agrees with ++todo fix parameters++ . Randomization and bootstrapping

are similar but often lead to different results ++todo check for section sym-

bol++ see P. I. Good (2006, sections 7.2 and 11.2). The advantages of using a

randomization test are:

• it can be applied with outliers, broad tails, rank or robust transformations,

• it has weak assumptions,

• it can be applied to finite sample spaces, and

• it is based on the assignment model (see Erich L. Lehmann, 2006) appropriate

for our economic experiments.

Permutationor randomization tests compute the test statistic with permuted

relabeling; bootstrapping computes the test statistic with resampling.

Bradbury (bradbury.1987 ), Romano (DiCiccio and J. P. Romano, 1990)

++todo check if correct cite not 89.++ ter Braak (ter Braak, 1992), and

Good (P. I. Good, 2006) compare bootstrapping with permutation tests.
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Lehmann (Erich L. Lehmann, 2006) ++todo nonpar or hypoth book.(86)++

Welch (90)(W. J. Welch, 1990) and Romano (DiCiccio and J. P. Romano, 1990)

provide an introduction to the theory (see also P. I. Good (2006, chapter 14)).

++todo see Good pg 169++ Pesarin (1990, 2001, 200x) describe the per-

mutation method. The permutation methods require that the multivariate vectors

be exchangeable. Generally, permutation tests proceed in the following steps:

1. Choose a test statistic;

2. compute the test statistic for the original observations;

3. compute the test statistic for all relabelings (permutations) of the original

observations;

4. determine the percentage of relabelings that lead to values that are more

extreme than the original value. ++todo See Good page 178.++

Randomization tests yield exact significance levels only if the labels are exchange-

able under the null hypothesis. Randomization tests are not assumption free; accord-

ing to P. I. Good and James W. Hardin (2009, page 112) they cannot be applied

successfully to the coefficients in a multivariate regression; the bootstrap can be

used. ++todo Can use boot true?++ Logistic regression falls in the same

category (see D. A. Freedman, 2008).

For a valid two-sample test under the null hypothesis the two empirical dis-

tributions should be the same (in practice this means they have similar shapes,

I agree that similar is vague). For a two-sample test the permutation version of

Y − X (Erich L. Lehmann, 2006, Chap. 1, Sec. 7E) can be viewed as distribution

free and is asymptotically equivalent to the t-test. See lehmann testing 1959.

We cannot always assume that exact tests are always best; A. Agresti and

Coull (A. Agresti and Coull, 1998) shows that for the interval estimation of a

binomial proportion the Wilson-score interval is best. ++todo What defines

best? Check what best is and if conservative.++

Pages with references to closed reference set (Edgington and Onghena, 2007,

page 341).

Kempthorne, 0. (1955). The randomization theory of experimental inference.

JASA, 50, 946–967.

Kempthorne, 0. (1975). Inference from experiments and randomization. In A

Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.). Amsterdam:

North- Holland. 303–33.

The procedure, algorithm is in(P. I. Good and James W. Hardin, 2009, page 77).

++todo add algorithm++ This or multivariate.
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9.8 Bootstrap

The purpose of the bootstrap procedure is to construct a distribution (sampling

distribution) for a statistic.

Permutation or randomization tests compute the test statistic with permuted

relabeling (the rearranging of the data); bootstrapping computes the test statistic

with resampling (repeated sampling of a subset of the data).

Bradbury (1987) compares bootstrapping with permutation tests. Romano

(89), ter Braak (92), Good (99) compare the randomization test to bootstrapping.

Lehmann (86), Welch (90) and Romano (90) provide an introduction to the the-

ory (see also P. I. Good, 2006, chapter 14). The bootstrap procedure is a useful way

to compute standard errors— given a model. See Young (Young, 1986) and Hall

and Wilson (Hall and Wilson, 1991).

When using the bootstrap procedure the sample acts as a surrogate for the

population. For difference of means, repeated samples (of pairs) give an estimate of

the distribution of the distribution of the difference of means. For the bootstrap we

do NOT combine the two samples. IS this CORRECT? Good errors—chap 3

and 7 do not use combined sample? Page 81 uses combined sample in this situation,

what does a combined-sample mean?

Hall and Wilson recommend that the bootstrap be only applied to the statistics

with large sample distributions that do not depend on any unknowns. They also

recommend using the t-statistic instead of the difference between means, since it

provides a test that is, more powerful and closer to exact.

Rice gives this description of the bootstrap,

We have data x1, . . . , xni. i.d. ∼ F and an estimate of the location parameter

θ̂. Since θ̂ is a function of random variable; we would like to know the sampling

distibution or variance of θ̂.

Is it size n or size m ≤ n.

If we know F we can find the probability distribution of θ̂ abalytically or we can

simulate N samples of size n from F, calculate θ̂ from each sample. Use this set of

estimates to estimate the distribution or estimate the variance. Var =
∑

(θ
i
−theta)

N
.θ

is the mean of the estimates. Since we usually do no know the distribution F we

sample from the empirical CDF Fn. The sampling is done with replacemeny.

Remark 9-3

We used monte carlo sampling to find the distribution of the estimate

of location, bootstrapping is not a monte carlo proceedure. Other pro-

cedures can be used See. �



CHAPTER 9. DATA ANALYSIS 108

Bootstrapping the mean, t

Simulations presented in Wilcox (2010) (Wilcox, 2010) show that the bootstrap-t

is better ++todo how++ than the percentile bootstrap for untrimmed means.

When the trimming is twenty percent or more the percentile bootstrap is better

than the bootstrap-t. When the trimming is ten percent they are similar.

Percentile bootstrap is better when the data are sampled from a skewed distri-

bution; the confidence intervals are not constrained to be symmetric.

Another is the BCa-corrected bootstrap (confidence interval), (page 14–35 Hes-

terberg et al., 2005, comment on usage).

Bootstrap Failure

Describe bootstrap failure. Suppose our statistic is X̂n or X̂n and X̂n converges to

X̂∞ X̂n → X∞ in distribution. If the distribution of X̂n does not converge to the

distribution of X̂∞, then there is a bootstrap failure; the confidence intervals are

unreliable.

The bootstrap can fail with the sampling distribution of an extreme order statis-

tic. Consider the maximum order statistic of a random sample from a U [0, θ]

distribution Andrews, 2000.

++todo Find the source for these.++

Example 9-1

Insert an example from a sample of normal random variables, see text

comments. �

++todo Example.++

Example 9-2

An example: exchangeable arrays P. McCullagh, 2000, see text com-

ments. �

++todo Example.++

See Some asymptotic theory for the bootstrap Bickel and D. Freedman (1981)

and Erich L Lehmann and J. P. Romano (2005, Chapter 15: General Large Sample

Methods).
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9.9 Asymptotics

Asymptotic properties are of

little value unless they hold for

realistic sample sizes.

Potscher (potscher.1991 )

The value of some statistical procedures is based upon their asymptotic proper-

ties6 The properties of statistics from a sample of size 1,000 may be different from

the properties of statistics from a sample of size 10 (see D. A. Freedman, 2009, page

210). Asymptotic properties are valuable because they give clues to the behavior of

smaller samples and procedures that do badly with large samples are likely to do

badly with small samples.

9.10 Robustness

9.11 Violations and Type I Error

The violation of assumptions can affect the significance level of a test (type I er-

ror) (G. E. P. Box and T. G. C., 1964; J. W. Tukey and McLaughlin, 1963, see) it

also affects the power of the test (the type II error).

Robustness is a general term which means. When it is applied to a specific test,

the description includes the violated assumption (normality, independence, etc.)

the change ( ++todo better word++ ) (e.g., the variance is doubled) and the

conditions which the violation occurs (e.g., small sample size).

Example Place Holder

% fixme .. show example

9.12 Violations for the T-test

To test the equality of two means (two-sample test) the t-test, WMW test, and

the Welch test are in common use. Each test requires assumptions to be satisfied

for the p-values to be reliable. The t-test requires the assumptions of indepen-

dence, variance homogeneity and normality. The significance level of the t-test is

robust to departures from normality, but the power is not robust. ++todo See

stats/violation.txt for reference list.++

6The properties of a statistic (standard error, efficiency, bias) when the sample is large.
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Perry (Perry, 2003) provides a summary of results from Zimmerman andWilliams zimmerman.1989

Gans Gans and Robertson (1981), Murphymurphy.1976 and Snedecor & Cochran Snedecor

and W. G. Cochran (1980) who demonstrated that the Welch test and the WMW

test are more robust in certain cases of variance heterogeneity or nonnormality.

They can be summarized:

1. The t-test is robust when the distributions are symmetric and the variances

are equivalent.

2. The Welch test is robust when the distributions are symmetric and the vari-

ances are unequal.

3. The Wilcoxon-Mann-Whitney test is robust when the distributions are asym-

metric and the variances are equivalent.

4. None of the above three methods are robust when the distributions are asym-

metric and the variances are unequal.

Perry (Perry, 2003) provides preliminary tests to determine which of the three tests,

the t-test, the Welch test, or the WMW, should be used to test the equality of two

means. These test are used to determine whether the population variances differ

and whether the underlying distributions are symmetric or skewed.

Testing Equality of Variance

For homoscedasticity, Levene’s test or the Browne-Forsythe (M. B. Brown and

Forsyth, 1974) test. Browne-Forsythe is reported to be a little more robust. ++todo

Where cited.++ Bartlett’s test is more sensitive to non-normality. ++todo

Change—this is in the anova section.++

Graphical Methods to Assess Violations

Graphical assessments are useful since you can focus on the degree of the violation;

and observe violations that might not be picked up by a test.

Use exploratory data analysis: boxplots and histograms are useful.



10 Rank Tests

Rank tests are permutation tests applied to the ranks of the observations rather

than to their original values. While rank tests are an important category of tests,

the value of rank tests has diminished because of improvements in computation.

They are low assumption tests, but that does not mean that they apply to every

situation. When computers took a long time for simple permutation tests, rank

tests had the advantage that p-values held for all samples of the same size.

They should not be employed except in the following two instances: P. I. Good

(2005, page 139)

1. When one or more extreme-valued observations are suspect.

2. When the methods used to make measurements were not the same for each

observation.

Generally, rank tests are less powerful than permutation tests. I discuss permutation

tests in §9.7; see also references to be.

When the observations are not on the same scale (perhaps made at different

times or laboratories), the observations are not exchangeable. When we use the

ranked observations (for each laboratory or occasion) the observations are trans-

formed to a common scale and the results from each occasion are comparable (i.e.,

they can be combined). For example, the variances may differ due to the different

variation in subjects, different implementation or recording methods, or different

pay scales. Categorizing, for instance into success and failure bins reduces over-

weighting the high variance occasions, since it is unlikely that we have a precise

measure of the different variances.

111
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Just about every parametric statistical test has a non-parametric substitute, the

Kruskal-Wallis test is the non-parametric one-way ANOVA, the Wilcoxon signed-

rank test is the non-parametric version of a paired t-test, and the Spearman rank

correlation can be used as a non-parametric version of linear regression.

Nonparametric tests do not assume that the Empirical Distribution Function

(EDF) fits the normal distribution, they assume that the data in different groups

have the same distribution. If different groups have different shaped distributions

(for example, one is skewed to the left, another is skewed to the right), a non-

parametric test may not be any better than a parametric one.

The tests (that is, the null distribution) in this chapter can be derived under the

single assumption of random assignment to treatments, see the discussion in §8.3.

10.1 Essential Assumptions

Independence, common distribution, and symmetry. Jaechel (jacechel ) studies

departures from assumptions (see also Erich L. Lehmann, 2006, page 191).

Rank tests and (many non-parametric tests) make the assumption that overall

the distributions that are compared have the same shape.

Rank tests, even though they are locally most powerful, suffer from the drawback

that, under certain conditions, they may have power as low as zero to detect some

alternatives of interest. The Smirnov and convex hull tests are shown, through

exact conditional power calculations and simulations, to avoid this drawback (V. W.

Berger, Permutt, and Ivanova, 1998, see).

10.2 Sign Test

While the sign test is infrequently used in EEs, it is important to understand because

its understanding involves most of the concepts of more complicated tests. The sign

test is simple but it does pose some of the same problems as more complicated tests.

The sign test dates from Arbuthnot (1710) who applied it to christening data, the

test and its assumptions was described in Dixon and Mood (1946).

The biggest problem is the treatment of zeros (Randles, 2001, see).

The sign and signed-rank Wilcoxon tests for paired comparisons are designed

to test the hypothesis of no treatment effect against the alternative of a shift in

observations (raising or lowering).

10.3 Wilcoxon Test

The U -test of Mann and Whitney (Mann and Whitney, 1947) (based on Wilcoxon

test) is a low assumption (distribution-free, nearly assumption-free, Sachs pg 293)
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counterpart to the t-test for the comparison of means of two continuous distribu-

tions. It is assumed that the two groups of data (samples) being compared have the

same form of distribution (Gibbons, 1964; Pratt, 1964; Edington, 1965, see).

The test statistic W is computed by ranking the (m + n) observations of both

groups. Let R1 be the sum of the ranks in group 1 and R2 be the sum of the ranks

in group 2.

W1 = mn +
m(m + 1)

2
− R1 ,

W2 = mn +
m(m + 1)

2
− R2 ,

W = min(W1,W2) .

Under the null hypothesis of identical distributions conditional on ni and ti .

E [W ] =
n1(n1 + n2 + 1)

2

Var(W ) =
n1n2(n1 + n2 + 1)

12
−

n1n2

∑c
j=1(t

3
j − t j )

12(n1 + n2)(n1 + n2 − 1)
.

The second term of (10.3.1) is the correction factor for ties, it is zero when there

are no ties. The corrective term for ties is:

r
∑

i=1

(t
3
i − ti )/12

where r is the number of ties, and ti is the multiplicity of the ith tied value; ti is

the number of occurrences of the ith tied value.1

Under the null hypothesis of the Wilcoxon-Mann-Whitney test any permutation

of the response/observations is equally likely to be observed. To calculate the p-

value under the null hypothesis, the test statistic Ŵ is first calculated, then the

data are permuted and a new W is calculated, if W is more extreme than Ŵ it is

counted. W is calculated for every permutation of the original responses. A monte-

carlo procedure can also be used if there is a large number of permutations (see

discussion on randomization tests page). ++todo Add randomization chap,

page ref.++ For the number of observations in the typical economics experiment

this is a quick calculation. Before the current computation age, the p-value was

assigned an asymptotic approximation, this should never be required today.

The Wilcoxon test is equivalent to tests based on the number of concordant and

discordant pairs. With unordered groups concordant and discordant are arbitrary.

1It was developed by walter1951 (walter1951 ) following a suggestion by M. G.
Kendall (M. G. Kendall, 1945) .
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Bases inference on the distribution of concordant and discordant pairs under the

null hypothesis of identical distributions (this is the Mann-Whitney test). Natural

effect measures α. ++todo Delta stochastic superiority measures, see

section 2.1.?4++

The U -test of Wilcoxon, Mann, and Whitney tests against the following alter-

native hypothesis: The probability that an observation from the first population is

greater than an arbitrary observation from the second population, does not equal
1/2. This is equivalent to comparing the average ranks of two groups of data.

The WMW test is not a median test unless certain restrictions are met. It

requires that the alternative hypothesis’ be restricted to location-shifts.

Ha : G(t) = F (t − δ)

That is, X and Y have the same proper distribution. Y = dX + δ; Y has the same dis-

tribution as X + δ. Since it is required that the observations are exchangeable, which

requires that the two distributions have the same variance. The test is sensitive to

differences in median only for n1 = n2.

The asymptotic efficiency of the U -test is nearly (100/π) ≈ 95%, i.e., the U -test

based on 1,000 values has about the same power as the t-test based on 950 values,

when a normal distribution is present. The asymptotic efficiency compared to the

t-test cannot fall below 86.4% for any population distribution Hodges and Lehmann

1956 ++todo what restrictions on dist++ .

This is from Sachs: While the U -test is one of the most powerful nonparametric

tests, the significance levels (regarding tests of location) become more unreliable

with increasing difference in the form of the distributions between the two groups

(treatments).

See Erich L. Lehmann (Erich L. Lehmann, 2006, page 81) provides a short

comparison between the t-test and the Wilcoxon; but are power comparison only

relevant in population models? ++todo Check power with permutation

model.++

From Sachs, other tests are Van der Waerden (X-test cf. 1965), Terry-Hoeffding

and Bell-Doksum (Bradley 1968).

If the samples do not have the same form of distribution, one alternative is

the median quartile test, which categorizes the observations into a 2times4 table of

quartiles (see Baure 1963 baure1963 ). When all expected frequencies are greater

than one, it examines differences in location, dispersion and some differences in

shape of the distributions. ++todo Is this the KS test with binned data?++

++todo See Sachs page 302 note 6.++
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Ties

Ties worsen the normal approximation since there a fewer values in the domain and

they create a lumpy distribution (see Erich L. Lehmann, 2006, page 20).

A (common) assumption underlying the Wilcoxon test, concerns the alternative

hypothesis. When there is a difference between the treatments, the observations

under one treatment tend to be larger (or smaller) than the other; this is called the

shift alternative.

The Siegel-Tukey test tests for differences in the variation of treatment observa-

tions.

The Smirnov test tests for the equality of two treatments against the alternative

that there is a difference between the two treatments, without specifying the form

of the alternative.

The WMW has little power power to detect treatment effect of increased varia-

tion (or more observations in the tails for one treatment). See Chapter 12 for some

examples.

Treatment Effect

See lehmann page 81.

10.4 Kruskal-Wallis Rank Sum Test

When comparing several treatments, testing the hypothesis of no difference between

all treatments is common.2 In deciding on the appropriate test statistic you must

also be clear on the alternatives which the hypothesis being tested against. Differ-

ences in treatments can occur in many ways: shifts in observations, the spread of

observations, clumping of observations are the primary ways in which differences

may manifest themselves, Kruskal and Wallis (1952). ++todo define clumping

above?++

We shall consider the scenario where treatments affect the level of the obser-

vations (the shift alternative), and that there is an order among treatments. One

indication of the order of treatments is the average rank (if the primary assumptions

are met, see sect TODO)

Ri . =

∑n
i

j
Ri j

ni
2But when pairwise or contrast treatment differences are the primary research questions, then

it is unnecessary to first test the existence of differences, and test like the KW is unnecessary. §11.7



CHAPTER 10. RANK TESTS 116

where

Ri j is the rank of observation j in group i ,

ni is the number of observations in group i ,

Ri . is the mean rank in group i ,

T is the number of groups or treatments ,

N is the total number of observations .

. A typical criterion for measuring the overall closeness of Ri . to R.. is the weighted

sum of squared differences
(

Ri . − R..

)

. The Kruskal-Wallis statistic the nonpara-

metric rank version of ANOVA, is

.K =
12

N (N + 1)

T
∑

i

ni

(

Ri . −
N + 1

2

)2

K is zero when there is no difference in average ranks and large when there are

differences in average ranks. The weights 12
N (N+1)

ni are chosen to provide a simple

approximation to the null distribution when ni are large (see Erich L. Lehmann,

2006). The (10.4) may be written

K =
12

N (N + 1)

T
∑

i

R
2
i .

ni
− 3(N + 1) .

This is easy to compute and may be more accurate since the treatment differences

do not have to be computed. ++todo See computation book.++

The critical values could be found in a table or by an approximation (χ2
(T − 1)),

see any nonparametric book). ++Find ref Give a KE table cite.++ Given

the observation sizes observation size usually found in an economic experiment it is

far more accurate and very easy to compute the critical value (i.e., the p-value) by

the permutation test procedure. An additional advantage of using the permutation

procedure to compute critical values is that ties do not pose problems as they would

when using the table values or the approximation. When the data are discrete

and there are many ties the (kw is not in glossary) test may not be appropriate

see Chapter 12.

The two-sample (kw is not in glossary) test reduces to the two-sided Wilcoxon

test.

Example Place Holder

Provide an example of the KW test.
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It is commonplace to make pairwise comparisons of treatments when the (kw is

not in glossary) test gives a significant difference. Pairwise ranking may lead to

inconsistencies, in particular the procedure is not transitive. The procedure may

declare A > B and B > C but not declare A > C.

Example Place Holder

Lehmann inconsistency example; page 245.

the difficulty does not exist in joint ranking (see R. G. Miller, 1981; Hsu, 1996).

Computation and Software

Software: amstat 62:2 may 2008, pg 123. ++todo Check this cite.++

10.5 Kolmogorov-Smirnov

The Kolmogorov-Smirnov (KS) test described in Lehmann is a test of a hypothesis

against the omnibus alternative. The KS statistic quantifies a distance between

the empirical distribution function of the sample and the cumulative distribution

function of the reference distribution, or between the empirical distribution functions

of two samples. The null distribution of this statistic is calculated under the null

hypothesis that the samples are drawn from the same distribution (in the two-sample

case) or that the sample is drawn from the reference distribution (in the one-sample

case). In each case, the distributions considered under the null hypothesis are

continuous distributions but are otherwise unrestricted.

Measuring the difference between two distribution functions by the supnorm

is considered sensible. ++todo by whom++ As with any test we need to

find the distribution of the test statistic under the null hypothesis. To specify

the distribution it required that the two samples are independent, and each i. i.d.

from the same underlying distribution. To rely on the usual asymptotic theory you

will need continuity of the underlying common distribution (not of the empirical

distributions).

The reason for the KS test is that its generality, e.g., it’s usefulness for non-

parametric models comes from the definition of the test statistic under the assump-

tion of the CDF being continuous.

Where we define the KS statistic as

Dn (F) = max
(

D
+

n (F),D
−
n (F)

)

D
+

n (F) = sup
x∈ℜ

[Fn (x) − F (x)]
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and the reverse for D
−
n (F). Then under the null D

+

n (F) = max0≤i≤n
(

Fn (xi ) − F (X(i))
)

.

Recall that under the null, F (X(i)) is continuous and uniformly distributed on (0,1)

so the distribution of F does not matter.

Empirical Distribution Function

The KS test uses the empirical distribution function: Let x1, . . . , xn be i. i.d.

real random variables with the common CDF F (t), then the empirical distribution

function is defined to be

F̂n (t) =
number of elements in the sample ≤ t

,
n =

1

n

n
∑

i=1

1 { xi ≤ t}

where I A is the indicator of event A. For a fixed t, the indicator I xi ≤ t is a Bernoulli

random variable with parameter p = F (t), hence nF̂n (t) is a binomial random vari-

able with mean nF (t) and variance nF (t)(1 − F (t)). This implies twidehat F̂n (t) is

an unbiased estimator for F (t).

Temp R code display

In R, you can use the ks.test, which computes exact p-values for

small sample sizes, you can also do a bootstrapped KS test

sekhon.berkeley.edu/matching/ks.boot.html which gets rid of the

continuity requirement ks.boot.

Examples:

Goodness of Fit

The KS GOF test is one-sample test. Let
Oi = observed count category i, and

Ei = expected count category i.
The Kolmogorov-Smirnov test statistic (10.5) is a goodness of fit test for continuous

data.

TKS = sup
x

‖FN (x) − F
′
(x)‖ Goodness of Fit.

where FN (x) is the EDF and F
′
(x) is the cumulative null distribution.

TheKS test is based on the Empirical Cumulative Distribution Function (ECDF).

Given N ordered data points Y1,Y2, . . . ,Yn the ECDF is defined as EN = n(i)/N ,

where n(i) is the number of points less than Yi . This is a step function that in-

creases by 1/N at the value of each ordered data point.
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The one-sample or goodness-of-fit (GOF) Kolmogorov-Smirnov test is defined

by:

H0 : The data follow a specified distribution, and

HA : The data do not follow the specified distribution .

The Kolmogorov-Smirnov test statistic is often defined as, also written as (a good-

ness of fit test)

D = max
1≤i≤N

‖F (Yi ) −
i

N
‖

but this is not correct, it should be

D = max
1≤i≤N

(

F (Yi ) −
i

N
,

i

N
− F (Yi )

)

or

D = max
1≤i≤N

(

F (Yi ) −
i − 1

N
,

i

N
− F (Yi )

)

where F is the theoretical cumulative distribution of the distribution being tested

which must be a continuous distribution, and it must be fully specified (i.e., the

parameters cannot be estimated from the data).

When the Kolmogorov-Smirnov test is used as a GOF test. In the special case

of testing for normality of the distribution, samples are standardized and compared

with a standard normal distribution. This is equivalent to setting the mean and vari-

ance of the reference distribution equal to the sample estimates. Using the sample

values to define the specific reference distribution changes the null distribution of

the test statistic: see below. Various studies have found that, even in this corrected

form, the test is less powerful for testing normality than the Shapiro-Wilk test or

Anderson-Darling test (Stephens, 1974, see). ++todo Check Cite.++

The Kolmogorov-Smirnov test may also be used to test whether two underlying

one-dimensional probability distributions differ. The two-sample KS test is a useful

method for comparing two samples, as it is sensitive to differences in both location

and shape of the empirical cumulative distribution functions of the two samples.

The Kolmogorov-Smirnov statistic is

Dn,n
′ = sup

x

‖F1,n (x) − F2,n′ (x)‖,

where F1,n1
and F2,n′ are the empirical distribution functions of the first and the

second sample. The null hypothesis is rejected at level α if

√

nn
′

n + n
′ Dn,n

′ > Kα .
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The two-sample test checks whether the two data samples come from the same

distribution. It does not specify the common distribution.

Let Xi ∼ F and Yi ∼ G be independent i. i.d. sequences. Then

nF̂n (x) = |{ i : Xi ≤ x }| = |{ i : F (Xi ) ≤ F (x) }|
nĜn (x) = |{ i : Yi ≤ x }| = |{ i : G(Yi ) ≤ G(x) }|

So, with the assumption that F and G are continuous distributions, under the null

hypothesis F = G sup|F̂n (x) − Ĝn (x) | is equal in distribution to the same statistic

obtained from two independent U (0,1) samples of the same size.

The Kolmogorov-Smirnov statistic (over the class of distributions of continuous

random variables) is distribution-free. So, the distribution of the test statistic does

not depend on the underlying distribution of the data (under the null hypothesis).

The distribution of the test statistic is asymptotic ++todo what++ (that

is, valid when the smaller sample size is itself large); it likely does depend on the

common underlying distribution for small samples. ++Explain Asymptotic

=> depend distribution.++

Let Xi ∼ F and Yi ∼ G be independent i. i.d. sequences. Then nF̂n (x) = |{ i :

Xi ≤ x }| = |{ i : F (Xi ) ≤ F (x) }| and nĜn (x) = |{ i : Yi ≤ x }| = |{ i : G(Yi ) ≤ G(x) }|.
If we assume that F and G are continuous distributions under the null hypoth-

esis F = G, then sup |F̂n (x) − Ĝn (x) | is equal in distribution to the same statistic

obtained from two independent U (0,1) samples of the same size. Under the null hy-

pothesis, the asymptotic distribution of the two-sample Kolmogorov-Smirnov statis-

tic is the Kolmogorov distribution, which has CDF:

Pr(K ≤ x) =

√
2π

x

∞
∑

i=1

e
−(2i−1)

2
π

2/(8x2
) . (10.5.1)

Temp R code display

> x <- rnorm(50)

> y <- runif(30)

> ks.test(x, y) \# kst <- ks.test ; summary(ks.test)

\# Two-sample Kolmogorov-Smirnov test data:

\# x and y D = 0.5,

\# p-value = 9.065e-05

\# alternative hypothesis: two-sided

> ks.boot(x, y, nboots=500)
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Temp R code display

By default, it will compute exact or asymptotic p-values based on

the product of the sample sizes (exact p-values for n.x*n.y < 10000

in the two-sample case),

or you can specify this option with a third argument, exact=F or exact=T.

Exact p-values are calculated using the methods of Marsaglia, \etal (2003),

from http://www.jstatsoft.org/v08/i18/paper my location file:

kolmo-KStestMarsaglia2003.pdf

Some large sample approximations are given Critical_KS-largSamp.pdf.

KS with Discrete Data

The KS test does not directly apply to discrete distributions. The asymptotic

approximation of the p-value for the KS test is not valid with discrete distributions.

The KS test statistic has the same distribution under all continuous distributions,

but if the actual distribution is not continuous, and one tries to construct a level α

test assuming that the distribution is continuous, then the actual level of the test

with be less than α (see Erich L Lehmann and J. P. Romano, 2005, page 584). To

make a level test based on the KS statistic, the critical value can be computed by a

permutation test.

For discrete data the χ2-test may provide better power.

The popularity of the KS test is that the (sampling) distribution of the KS-

statistic has been computed for all continuous distributions. For discrete, binned,

or tied observations each distribution is different.

The KS-statistic is distribution free in the set of continuous distributions; under

the null hypothesis the distribution of the KS-statistic is the same for all continuous

distributions which the data is sampled from see Appendix F.1.

Noether (Noether, 1963) shows that for ordinal categorical data it is conser-

vative. Conover (W. J. Conover, 1972) develops methods to determine the exact

distribution for the discrete problem and Pettitt and Stephens (Pettitt and Stephens,

1977) proposed a modification of the Kolmogorov-Smirnov test statistic— the or-

dinal Kolmogorov-Smirnov test statistic as given by (10.5).

TOKS = max
1≤ j≤k

‖
j

∑

i=1

(

Oi − Ei

) ‖
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lange1997 (lange1997 ) suggests that the researcher should “not foolishly rely

on the standard chi-square approximation”, Nikiforov (Nikiforov, 1994) provides a

Smirnov two-sample test for arbitrary distributions.

K-sample generalization

++todo Do this.++ Smirnov k-sample problem generalization, Lehmann page

249 and others. See Lehmann test of randomness chapter 7.

Multivariate KS test

justel1997 (justel1997 ) proposed a multivariate KS for continuous data.

Ties

Ties are a problem for the Smirnov test, neither the null distribution nor the asymp-

totic distribution applies (see Erich L. Lehmann, 2006, page 38).

Place Holder

Software How to:

In R, you can use the ks.test, which computes exact \pvals for small

sample sizes. In R you can also do a bootstrapped K-S test

sekhon.berkeley.edu/matching/ks.boot.html which gets rid of the

continuity requirement.

10.6 Grouped Observations

Emerson and Moses (Emerson and Moses, 1985) describes the use of (WMW is

not in glossary) and χ2-tests for 2 × k ordered tables. And he says what? For a

2× c data set rank all observations on Y , use sum of ranks in the first row relative to

its null expectation (see Erich L. Lehmann, 2006, pages 19–25, 1975 first edition).

For ordered categorical responses use mid-ranks or ridits. Sum of ranks W for

column/treatment/row, 1, . . . ,C, the number of tied observations at level j = t j . See

“The appropriateness of the Wilcoxon test in ordinal data” (Hilton, 1996).

For data with clumpings (perhaps at zero) Lachenbruch 1976 (lachenbruch1976

) uses a χ2 approximation ala sachs.

Contingency Tables

Lehmann page 303.

The chi-square test of goodness of fit is specifically for discrete distributions; it

can be applied to continuous distributions only by binning them (that is, turning

them into discrete distributions). chi2 http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
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10.7 Other Tests

10.8 Siegel-Tukey

The Siegel-Tukey test lacks symmetry; switching the direction of the rankings (from

1, . . . , N to N, . . . , 1) may lead to opposite decisions, when it should lead to the

same decision.

10.9 Median test

Useful when the distributions differ considerably since the U -test is of little value

(ala sachs).

Friedman rank sum test

The Friedman rank test (M. Friedman, 1937) is appropriate for data arising from

an unreplicated complete block design: one in which exactly one observation was

collected from each experimental unit, or block, under each treatment. The elements

of y are assumed to consist of a group effect, plus a block effect, plus independent

and identically distributed residual errors. The interaction between groups and

blocks is assumed to be zero.

The returned p-value should be interpreted carefully. It is only a large-sample

approximation whose validity increases with the number of blocks.

10.10 Trend Test

Mann-Kendall trend test, also known as the Mann test.



11 Single Observations

11.1 Simple Single Observation per session

To analyze repeated measures data, analysis can be performed as single data point,

where a response feature summarizes the response profile, e.g., max, average, or

slope.

The merits of a summarized analysis is that it is simple, statistically valid; but

loses information and a loss in error degrees of freedom (less power?). If summary

measure gives an accurate estimate for each unit, but variation between units is

not reduced. This implies that large (t-time periods) are not a substitute for small

(n sample size). It does not account for variance of units. ++todo [++ in-

line]Construct a real graphical example.

If a vector of multiple measurements from each experimental unit is reduced

to single measurement, results will be misleading if the selected summary statistic

does not adequately describe the data. Some useful summary statistics are mean,

median, slope of a regression, integral of a time series, AUC (the Area Under the

Curve), growth rate. It is a simple approach and can be useful.

Vernon Smith. 1982 “Markets as Economizers of Information: Experimental

Examination of the Hayek Hypothesis” Economic Inquiry Vol 20 April pp. 165–175.

Example of contrafactual experiment (theory).

Example Place Holder

p|

| Demand

124



CHAPTER 11. SINGLE OBSERVATIONS 125

30 |---------------+

| |

| | |

| | |

|x x | |

| x x x | |

20 |----------x-x-x+-------+

| | Supply

| |

| |

| |

|

-+---------------+-------+------------

| 8 12 q

A double auction market. The experiment had two treatments: noInfo where

subjects knew only their own value; info Subjects new the values of everyone in the

experiment, both buyers and sellers.

This contradicts the Hayek Hypothesis that complete information was necessary

for a market to reach a CE at a price of 20 and a quantity of 8.

These experiments show that it is not necessary, and also may drive prices away

from the CE.

Here we could use the last price of the period of the last period as the summary

statistic. So we will have a single statistic per session. If we use these data and test:

But what do we test? The question asked was: is complete information necessary

for a market to reach a CE.

So we have two questions. One, will a market with complete information reach

competitive equilibrium (p,q).

Providing two treatments information and no information, and randomizing

treatments to subject groups, allows us to test if the ++todo Add data analy-

sis++

Why might this be a problem. High variation, low variation have same mean,

median. Time paths may differ. For example, a researche might be more confident

in anouncing a significant difference between treatments if both treatments had a low

variation path, then if they had a high variation path. ++todo [++ inline]Put

low variation, high variation plots, and see Hand.

The use of average rather than end-of-period data could result in biased esti-

mates, see Wilson, Jones, Lundstrum, 2001, good.errors.

Mosteller and Tukey (Mosteller and J. W. Tukey, 1977) advised their readers

to use a summary statistic for clustered data.
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11.2 ANOVA

A
nalysis of variance is a collection of statistical models, and their associated

procedures, in which the observed variance is partitioned into components of

different sources of variation. In its simplest form ANOVA provides a statistical

test of the equality of the means of several treatments, and therefore generalizes Stu-

dent’s two-sample t-test to more than two groups. ANOVAs have an advantage over

multiple two-sample t-tests, doing multiple two-sample t-tests increases the chance

of committing a type I error. I will discuss in section ++todo Get Section++ ,

reasons why doing an glsanova is not always preferred. ANOVA compares group dif-

ferences of a continuous response variable. ANalysis Of COVAriance (ANCOVA)

compares group differences after controlling for a dependent continuous variable

(also called a predictor a covariate).

Fisher (R. A. Fisher, 1934) in the discussion to Wishart (Wishart, 1934) de-

scribed ANOVA as a “[. . .] convienient method of arranging the arithmetic.” It can

also aid int partitioning variation, degrees of freedom, and correct error terms Speed (see

Speed, 1987) and John W. Tukey (John W. Tukey, 1949) .

11.3 Anova Assumptions

The basic assumptions are:1

• Observations are sampled independently. ++todo Check if ttest and

ftest have same independence assumption.++

• Variances are equal (homogeneity), unequal variances are called homocedastic.

• The sample means have a normal distribution (if the observations have a

normal distribution, then the sample means will have a normal distribution).

11.4 Violations of Anova Assumptions

Normality is not a vital assumption. The normality of the residuals effects the

accuracy of the p-values, but the parameter estimates remain unbiased. If the

residuals are not normally distributed, then the probability of a false positive is

higher.

Simulation studieshave shown that there is not a large effect on the p-value by

when the errors are non-normally distributed (see Glass, Peckham, and Sanders,

1972; Harwell et al., 1992; Lix, J. C. Keselman, and H. J. Keselman, 1996). This

is because when you take many random samples from a population, the means of

1These are the same assumptions for the t-test.
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those samples are approximately normally distributed even when the population is

not normal (ala the central limit theorem).

Violations of independence Scariano and Davenport (1987).

Heterogeneity causes problems with the estimates of the p-statistic. ++todo

Fix.++ Skewness is a bigger problem than kurtosis. If the skewness is not too

large (what ever large means) and all groups are skewed in the same direction, the

bias may be small. ++Find ref Get CITE++ Variance heterogeneity affects

the efficiency of the OLS estimator.

The F-statistic

F =

∑k
i=1 ni

(

Xi · − X · ·
)

/(k − 1)
∑k

i=1 ni
∑n

i

j=1

(

Xi j − Xi ·
)

/(n − 1)

is highly robust when used to compare the mean of k treatments with ni observations

per treatment and a total of n observations, but it has four limitations.

1. The F-test is robust to minor deviations from normality, but gives erroneous

inferences if the distributions are skewed, heavy tailed, or bimodal.

2. Lack of normality lowers its power even for minor deviations. The previous ro-

bustness claim was for the estimation of the p-value (critical level). ++todo

Pval = critical level?++ For testing the normality assumption see §9.6.

++todo Where is the other cite.++

3. The F-test is suboptimal (there is a test with higher power) when testing

against non-normal alternatives.

Maxwell and Delany (Maxwell and Delany, 2004, pg. 50) describes the correspon-

dence of F-tests to randomization tests and gives references. This correspondence

is a stronger reason to use F-tests than large sample normality.

violations

Heterogeneity

Heterogeneity is more damaging than non-normality, but the ANOVA is pretty

robust if the heterogeneity is minor.

Levene’s (Levene, 1960) test is a test for homogeneity of variance, see also

Bartlett test (Bartlett, 1937); both are implemented in R.

A standard rule of thumb is that the largest group variance can be up to four

times the smallest without posing strong problems

max(std dev) < 2 min(std dev)

A good transformation should also address heterogeneity.
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Good and Lunneborg (P. Good and Lunneborg, 2005) provide a distribution free

permutation test when the variances are the same for all treatments; it is at least as

powerful as ANOVA. A rank test needs 100 observations to obtain the same power

as the permutation test with ++todo How many obs see good errors pg 90,

this and other things++ observations.

11.5 F Ratios

The F-test applies to the null and alternative hypothesis (Winer, 1971, page 332)

H0 : α1 = · · · = αp ,
if and only if

H0 : σ2
α = 0 .

for the factor A with levels α1 = · · · = αp . If all possible contrasts of A = 0 and

++todo not right dots++ µ1˙ = · · · = µp ˙ = µ ˙ ˙ , then

lHA : σ2
α > 0

constructs the F-ratio of the form

E numerator

E denominator
=

u + cσ
2
α

u

that is, E N = E D when σ2
α = 0.

Example 11-1

F,
σ

2
ε + nσ

2
αβ + nqσ

2
α

σ
2
ε + nσ

2
αβ

=

MSa
MSab

What if F < 1, then the assumptions do not hold (see Winer, 1971, page

332). �

++todo Check winer71 p332, F<1.++

11.6 Multivariate Regression

Gong 1986 (Gong, 1986), used a bootstrap approach to validate multivariable mod-

els; only retaining those that appear consistently. A simple model is

Yi j = µ+ τi + εi j , for i = 1, . . . ,nand j = 1, . . . , k , (11.6.1)
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where

µ : common effect for whole experiment, (11.6.2)

τi : effect of the jthtreatment, (11.6.3)

εi j : random error in the ithobservation jthtreatment. (11.6.4)

and

εi j∼ i. i.d. N (0,σ2
ε ) , (11.6.5)

τjare fixed XX, with
∑

j

= 0,or (11.6.6)

τjare random XX, τj ∼ i. i.d. N (0,σ2
τ ) . (11.6.7)

. For pre experiment orthogonal contrasts Cm and α fixed;

Cm =

∑

j

cjmT. j , such that
∑

j

cjm = 0 . (11.6.8)

For post experiment contrasts α is modified, see Scheffe, Tukey, and others ++Find

ref Scheffe, tukey post exp contrasts++ .

Linearity

Interested in the linearity of the data or in the linearity of the underlying curve?

Notes on Regression

Frank Harrell provides a general rule of thumb in his book (Harrell, 2001), that

to be able to detect reasonable-size effects with reasonable power, you need 10–20

observations per estimated parameter (covariate).

Doing the regression again with just the significant variables, is in almost every

case a bad idea (ala Harrell), see also D. A. Freedman (1983).

Dimension Reduction

Harrell (Harrell, 2001) also discusses options for dimension reduction (reducing the

number of covariates down to a more reasonable size), such as PCA. The dimensions

must be reduced without looking at the response variable.

More than one Dependent Variable

If you observe two random variables and perform two ANOVAss each with an

α = 0.05, then the experimentwise alpha is inflated. To maintain an experimentwise

α at 0.05 each ANOVA would have to be performed at a smaller α. MANOVA

might be a better alternative (see Husson, Lê, and Pagés, 2010).
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ANOVA variations

ANOVA is easy to use on ranked data but it has reduced power and it is difficult to

interpret (see W. J. Conover and Ronald L. Iman, 1981; W. J. Conover and R. L.

Iman, 1982).

++todo Cites in comments.++

11.7 Post hoc Testing

Post-hoc tests refers to ++todo does it always++ pairwise or other contrast

testing of treatments after a general test of the existence of a treatment effect. It

is often the recommended procedure that when an ANOVA or other k-sample tests

like the KW test are done and the treatment effects are found non-significant, then

contrast tests do not need to be performed. Contrast tests are performed only when

a significant treatment effect is found.

Post hoc tests refer to the multiple comparison tests performed after a global

ANOVA F-test is performed (or some other global type test like the Kuskal-Wallis

test). Often the procedure is to do the global test and then do the comparison

tests. This is not always the best procedure. “An unfortunate common practice

is to pursue multiple comparisons only when the hull hypothesis of homogeneity is

rejected,” (Hsu (1996, page 177)).

This may have been a good practice when computation was difficult, but it is

not a neccessary practice. Checking for overall significance is not a bad or incorrect

practice.

If the primary research question is in the contrast or pairwise comparisons of

treatments, then it is unnecessary to first test the existence of differences. There are

reasons not to do a k-sample test first. You can have significant pairwise differences

even when the overall k-sample test (e.g., ANOVA) is not significant.

Checking for overall significance over-corrects (lose significance because of the

number of tests, and more likely to commit a type I error). This only increases the

familywise error probability.

++todo Put an example about treatment sigs and not sigs.++

Like ANOVA, there can be paired comparison significant differences but not in

the group differences hypothesis.

A global ANOVA F-test can be significant when there are no individually sig-

nificant t-tests of any of the pairs. The results of the paired tests are valid except

when using the protected Fisher Least Significant Difference lsd (LSD) test, this

test is not recommended. ++todo By who.++

When the global ANOVA F-test is not significant there can be a significant

multiple comparison test. The exception is Scheffe’s test. If the global ANOVA is
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not significant, then the Scheffe’s test will not find any significant post tests. In this

case there is no benefit to performing post tests.

Other multiple comparison tests can find significant differences when the overall

ANOVA shows no significant difference.

If the experimental question asks if the data provides evidence that the treatment

means are not all identical then a global ANOVA is sufficient.

But if the experimental questions are about contrasts or pairs of treatments

means then an ANOVA is not necessary and the post tests can be directly performed.

The comparison must be planned before the data are collected; only the planned

comparisons should be tested in a confirmatory analysis.

If both planned comparisons and ad hoc comparisons are performed, then the

experimentwise alpha is inflated.

The ad hoc (post hoc) comparisons may be part of an exploratory analysis.

Remark 11-1

Tukey did not require the X-test to depend on significant results from

the ANOVA. Tukey’s test does not depend on the ANOVA results being

significant. �

11.8 Discrete

To test the equality of proportions in k categories two groups can use a Kolmogorov-

Smirnov type test of the form proposed by Pettitt and Stephens (Pettitt and

Stephens, 1977).

Their one-sample nominal/categorical Kolmogorov-Smirnov test has the form

Dn = sup
π

sup
1≤ j≤k

|
j

∑

i=1

( fEXP,π (i) − fOBS,π (i)) | (11.8.1)

where π is a permutation of the order of the categories, fOBS, i are the observed and

fEXP, i are the expected frequencies (proportions) in category i.

This can be written equivalently as

Dn =
1

2

k
∑

i=1

| fEXP, i − fOBS, i | (11.8.2)

The Pettitt-Stephens test is like an unweighted chi-square. (x1 − x2)
2 instead of

(x1 − x2)
2/x2 so is likely to have lower power than a χ2type test. See Agreseti.

++todo Power simulations, and example in comments.++
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11.9 Discrete Models Based on Counts

Models based on the binomial, multinomial, and Poisson distributions have strong

assumptions. For example, the variance has a fixed relationship to the mean. for

a Poisson distribution, the mean equals the variance. Often these relationships do

not empirically hold. The emphirical variance is larger than the emphirical mean

is called overdisperion. This can happen when the events being counted are not

independent.

Overdispersed models can be derived from these base models. For example, the

beta-binomial distribution is a a model for overdispersed binomial data.

One way that this can be derived is by letting the binomial probability vary in a

heterogeneous population according to a beta distribution. This is then integrated

to obtain the marginal beta-binomial distribution of the counts.

The negative binomial distribution can be obtained for Poisson count data in a

similar way.

11.10 Categorical

Conditional Inference

The Freeman-Halton extension of the Fisher exact probability test for a two-rows by

four-columns contingency table, providing that the total size of the data set is less

than 120, the test will yield two probability values, Pr{A } and Pr{B }, defined:

Consider a multinomial 2 × 2 table

(

x11 x12

x21 x22

)

(11.10.1)

with theoretical probabilities:
(

θ11 θ12

θ21 θ22

)

. (11.10.2)

The conditional distribution of x11 given x11 + x12 = n is binomial with size n and

proportion p =
θ11

θ11 + θ12

. Therefore we have a straightforward way to do statistical

inference on p by conditioning on x11 + x12.

Remark 11-2

Adopting the Bayesian approach with the Jeffreys (Dirichlet) prior of

the unconditional multinomial model is equivalent to adopt the Bayesian

approach with the Jeffreys (Beta) prior of the conditional binomial

model. �



CHAPTER 11. SINGLE OBSERVATIONS 133

An unconditional or conditional inference on p depends on how the data was

sampled. If x11 + x12 = n is fixed by design a conditional inference is natural. When

the total sum of the table (x11 + x12 + x21 + x22) is fixed by design it is an uncon-

ditional inference. To find an estimate of p use a multinomial model with fixed

column or row totals. ++todo Which?++ To estimate the parameters you

can parameterize the multinomial model by constructing

p1 =
θ11

θ11 + θ12

, p2 =
θ21

θ21 + θ22

, and p3 =
θ11θ22

θ12θ21

,

and estimate (p) by MLE with arguments logit(p).

Under particular assumptions, conditioning on both x11 + x12 and x11 + x21 and

n ++todo the what++ is known to give optimal inference. ++Find ref For

this.++

Fisher’s test and Bernard’s test

Instead of using Fisher’s test you might want to use Bernard’s exact test (which is

more powerful than Fisher).

Barnard’s (Barnard, 1945) exact test a powerful alternative to Fisher’s exact

test. There is an R implementation.

mostly EMPTY

11.11 Ordinal

EMPTY

11.12 Categorical Ordinal

WHEN the data are purely ordinal (e.g., small, big, bigger) (scores: 1, 4,

9), there is a difficulty with sums or differences of these scores because the

results depend on the arbitrarily selected values assigned to the ordered categories.

Any analysis should be invariant under monotone transformations of the ordinal

scale. If the variables are continuous and are observed within a restricted range,

the observations may not be normally distributed. Both of these situations make

parametric estimation problematic. ++todo [++ inline]Some of This applies to

purely categorical.

Using ridits to assign scores to categories of ordinal scales.

The assignment of numerical scores to a categorical ordinal variable (1 = small-

est, 3=small, . . . ,) ++todo textequal++ is arbitrary.

One alternative is the ridit (the average cumulative proportion), bross.1958;

Alan Agresti (see 2010) it is given by:

r j = , (11.12.1)
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where X is the proportion in the jth category.

For any two rows, A and B, the value YAB = estimates the probability of a

better response with treatment A than treatment B (Alan Agresti, 2010, page 17).

++todo Check if correct agresti cite.++

The Cramér-von Mises statistic is:
∑

k

(F
∗
2k − F

∗
2k )

(

F ·k (1 − F·k )
)1/2

,

F
∗
jk = N

∗
2k/n j ,

F ·k = N·k/n .

(see Pesarin and Salmaso, 2006) ++todo Correct dots, use .?++ Statistic

TAD compares two EDFs and is a permutationally equivalent to a discrete version

of a Cramer-von Mises two-sample GOF test statistic for stochastic dominance

alternatives, adjusted according to Anderson-Darling. Anderson-Darling test for

non-dominance alternatives, adjusted for discrete variables:

∑

k

(

F
∗
2k − F

∗
2k

)

[
F ·k

(

1 − F·k
)

]1/2
F
∗
jk = N

∗
2k/n j

F ·k =
N·k
n

.

You might find an exact solution with the NPC of dependent permutation tests (Pe-

sarin, 2001).

Brunner et al. (Brunner and Munzel, 2000) proposed a rank test of for the

Behrens-Fisher two-sample problem in a nonparametric model with the assumption

of continuous distribution functions relaxed.

A simulation with four categories and sample sizes of 50 (30 in group 1, 20 in

group 2) or 60 (30 in group 1, 30 in group 2) by Pesarin and Salmaso (2006) found

++todo findings by pesarin 2006++ .

The Kolmogorov-Smirnov KS test, which uses the largest distances between

the empirical CDFs, retains the orders of the groups and may be more powerful

than tests like the WMW. The KS test can detect alternatives that the WMW

cannot detect. See Chapter 12 for some examples where the WMW does not detect

differences when they exist.

Variations on the χ2-test may provide the best test; the χ2-test does respect

the order of the groups. The data is structured as a two-way table, treatments by

response. Pearson, Fisher’s exact test, permutation tests.

Let the count in bin j for treatment i be ni j . Let ni =
(

ni1, . . . ,niJ
)

be the

response vector for treatment i, J is the number of response categories. The KS-
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test compares the empirical cumulative distribution functions (ECDF). ++todo

Add to glossary, addgloss.++

Read Agresti’s review on ordered categorical variables (Liu and A. Agresti, 2005),

and on Bayesian methods Hitchcock and Alan Agresti (2005).

The Kruskal-Wallis test is a special case of the proportional odds model. You

can use the proportional odds model to model multiple factors, adjust for covariates,

etc.. See Peterson (1989), Peter McCullagh (1980), and Whitehead (1993).



12 Case Study

After researchers collect a set of observations (data), before any analysis begins, a

measurement scale is applied to the data. The four standard scales are nominal,

ordinal, interval, ratio.

scale A scale is a function that assigns a real number to each element in a set of

observations (for nominal type could tokens work, e.g., Y/N, M/F?)

The ordinal scale assigns a rank to each observation Huberty (1993, see).

The language used is often confusing, we do not have nominal data but data

that has been assigned a nominal measurement scale; we cannot describe the data

with a scale type. Similarly, a variable is not nominal. Often, for a data set,

the measurement scale is not arbitrary, e.g., the amount bid in an auction is best

with a ratio scale. ++todo Check ratio scale.++ Other times the proper

measurement scale is not automatic. For example, the comparison of gas mileage

between three categories (8-, 6-, or 4-cylinder) could treat these categories as interval

or ratio, Hand and Keynes (1993) and Paul F. Velleman and Wilkinson (1993, see).

The chosen measurement scale may depend on the research question; the hypothesis

does not depend on the measurement scale.

For instance in the case described below, if you are interested in difference in

average contribution, then a continuous scale would be necessary, if you are inter-

ested in the effect of treatments on the distribution of contributions, then an ordinal

categorical measurement might work best.

Different types of variables:

nominal Its values are members of an unordered set.
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ordinal Its values are members of a discrete ordered set.

continuous Its values are real numbers, time, distance. Sometimes a distinction

is made between interval and ratio, but the distinction is not very useful.

Agresti (see Alan Agresti, 2010) calls a variable with an ordered categorical

scale—ordinal. For ordinal scales, unlike interval scales, there is a clear ordering of

the levels, but absolute distances among them are unknown. An ordinal variable is

quantitative in the sense that each level on its scale is greater or smaller than another

level. For categorical data most statistical methods treat the response variables as

nominal—the results are invariant to permutations of the categories.

Most important whether data are qualitative (nominal) or quantitative (ordinal

or interval).

When choosing a measurement scale the statistics available for that scale should

be considered. If the researcher decides that an ordinal scale will be used, then

a linear model (generally more powerful than X !!->TODO->)<-<- cannot be

applied to the data as it could be if it where assigned a ratio scale.

Ordinal methods can be used with quantitative data, when the response variable

is interval scale rather than ordered categorical. For example, when the response

outcome is a count but count models such as the Poisson do not apply, each obser-

vation can be treated as a single multinomial trial with a finite (hopefully small)

number of ordered categories.

In experimental economics data observed in dictator type games can be assigned

either discrete ordinal, interval, ration. ++todo Check interval.++ In a stan-

dard dictator experiment one half of the subjects are asked to choose a contribution

between zero and a fixed amount. For example, may be able to choose a dollar

amount in { 0,1, . . . ,8 }, which provides for nine discrete categories.

12.1 Comparing Two Distributions

Several statistics (metrics) are available to measure the difference between two em-

phirical cumulative distribution functions ECDF. For example, the absolute value

of the area between them; or their intergrated mean square difference, the maximum

value of the absolute difference between them, this is the Kolmogorov-Smirnov dis-

tance D.

Two tests that are often used by experimental economists (see citet bort) to test

for treatment differences in dictator-type games are the Wilcox-Mann-Whitney and

the Kolmorgorov-Smirnov . The null hypothesis is F = G, where F and G are two

ECDFs; anothe null hypothesis tests the equality of the medians of the ECDFs.

Unfortunately, the process is flawed as I discuss below.

Consider the observations from an experiment with 4 treatments The data in Ta-
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Table 12.1. Distribution of contributions per treatment. .

Treatment 0 1 2 3 4 5 6 7 8 N mean histogram

A 8 3 0 4 0 1 1 1 4 22 3.0

B 8 1 0 2 1 0 3 2 5 22 3.8

C 2 2 1 1 0 2 3 3 8 22 5.4

D 2 1 1 0 1 0 6 1 8 22 5.8

Total 86

ble 12.1 shows the number of subjects who contributed the column amount for each

treatment and contribution category (cell). A common analysis of dictator-type

Table 12.2. P-values for the two-sided paired hypothesis of the dictator treatmens from Ta-

ble 12.1 .

Treatment

Pairs

Asymptotic Exact

WMW KS WMW KS Pearson

A, D 0.01 0.01 0.01 0.00 0.04

A, C 0.02 0.05 0.01 0.03 0.17

B, D 0.07 0.25 0.07 0.15 0.29

B, C 0.10 0.40 0.09 0.29 0.33

A, B 0.55 0.88 0.55 0.51 0.65

C, D 0.82 0.99 0.82 0.92 0.62

games applies the WMW, the KSKolmorgorov-Smirnov and the Pearson-χ
2
-tests.

The hypothesis’ tests the difference between medians, the equality of the distribu-

tions, and sometimes both.

The two-sided p-values for each pair and the WMW and KS tests (both asymp-

totic and exact) are shown in Table 12.2. The p-values of the two tests are different;

The WMW test provides evidence for a difference between the first four pairs, (the

hypothesis of the original analysis) and the KS provides evidence for a difference

between the first two pairs. The Pearson-χ2-test provides evidence for difference in

only one pair.

In Chapter 7 I argue against the use of multiple methodologies (analysis, tests)

and you can see that each test provides different results; a clear answer to the

initial hypothesis is difficult. The (WMW is not in glossary) test is not valid for

the discrete data of the dictator game and the (KS is not in glossary) test has to

be adapted for discrete data.

The Pearson-χ2-test ignores the ordering of the observations and it loses some
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information and hence efficiency; its p-values are all larger than the KS and WMW

making it a more conservative test. ++todo Is more conservative correct?++

Both the WMW and KS use the ordering of the data; the WMW because it uses the

ranks of the observations. The kS is also a rank test, but it is not very obvious; a

simple example will show that the KS-statistic is different when the order is changed.

In Table 12.3 the first distribution of observations F1 and G1 has a KS statistic of

Table 12.3. KS ordering.

Changing the order of the data changes the KS statistic

f1 g1 F1 G1 ∆1 f2 g2 F2 G2 ∆2

1 0 1 0 1 1 2 1 2 -1

1 0 2 0 2 1 0 2 2 0

1 2 3 2 1 1 2 3 4 -1

1 2 4 4 0 1 0 4 4 0

2 (maximum of |∆1|); when we switch rows 1 and 4 the maximum of |∆1| is 1. So

when the order of the observations is changed the KS statistic can be different. The

χ
2-statistic,

∑

i (Observeredi −Expectedi )2

Expectedi
,

does not depend on the order of the observations.

Let Y be an ordinal response variable, c the number of categories, n the number

of observations partitioned into the c categories. Let n1,n2, . . . ,nc denote the number

of observations in each category, with n =
∑

j n j , and pj = n j/n denote the sample

proportions. We are following the notation of Alan Agresti (2010).

For a randomly selected observation, let π j denote the probability of response

in category j. The cumulative probabilities are

Fj = Pr(Y ≤ j) = π1 + · · · + π j , j = 1,2, . . . ,c.

The cumulative probabilities reflect the ordering of the categories by

0 < F1 < F2 < . . . < Fc = 1.

What summary measures can we apply to ordinal data? One measure is the

median, the minimum j such that Fj ≥ 0.50. For the comparison of groups or treat-

ments this measure can be misleading with discrete ordinal (categorical response):

Changing a single observation can move the median from one category to another,

no matter how many observations you have, this can give a single observation greater

influence on the summary measure than other observations. Two groups can have
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Table 12.4. The median is not the message.

Treatement 0 . . . 5 . . . 10 N Mean Median Histogram

A 5 0 6 0 0 11 2.8 5

B 0 0 6 0 5 11 7.4 5

the same median but the distribution of one group can be shifted relative to the

other group (see Table 12.4 for an example) is another problem.

This may seem to contradict the widespread use of the median, but recall that

the advantage of using the median as measure of central location is its insensitivity

to outliers; in this environment outliers are not a problem. When the observations

have quantitative values, the ordinal scale can be treated as an interval scale, and

the mean of the observations can be used. If there is no obvious quantitative scale,

ordered scores can be assigned to the categories. Two common scores are ridits and

midranks. We will not discuss them here.

The typical research question asks if the treatment effects differ, if so, which

pairs?

Dictator game researchers often use the Kolmogorov-Smirinov, Wilcoxon-Mann-

Whitney, and the Kruskal-Wallis statistical tests. Unfortunately, none of these tests,

as normally used, are appropriate for the type of observations generated by dictator

games. The acWMW tests the equality of the mean of the ranks in an observation

group or treatment, so that it does not always capture differences in the observed

data distribution. To see this, look at the simple example presented in Table 12.5.

Table 12.5. The WMW test example.

Treatement 0 . . . 5 . . . 10 N Mean Sum ranks Histogram

A 2 0 0 0 2 4 5 18

B 0 0 4 0 0 4 5 18

As displayed in Table 12.5 the sum of the ranks for each treatment is 18; since the

number of observations for each treatment is the same the (WMW is not in glossary)

test statistic is zero. No level of significance would reject the null hypothesis of

no treatment effect. But simple observervation shows that the observations from

the different treatments have very different distributions. This is not an extreme

example, treatments A and B presented in Table 12.1 have similar data distributions

as treatment A in Table 12.5.

An understanding of the assumptions of (WMW is not in glossary) test is

required to understand the its proper usage. The (WMW is not in glossary) does
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not always indicate differences in data distributions in the general case, and although

it is often stated as such it only tests for differences in the median under certain

assumptions (they are not always satisfied). So even though the WMW (and other

tests) do not assume that the data are from a parametized probability distribution,

there are still assumptions that must be satisfied.

12.2 WMW assumptions

12.3 Kruskal-Wallis

The discussion on WMW can be easily extended to the Kruskal-Wallis test.

12.4 Kolmogorov-Smirnov

The kolmogorov-Smirnov test, tests the difference between two empiracal distribu-

tions by measuring the maximum difference between the two distributions. Finding

the probability distribution of the max is a difficult problem, so it was necessary to

assume that the data are measured by a continuous scale and that there are no ties.



13 Multivariate

Observations

A multivariate test is based on several variables simultaneously. For multivariate

normal data Hötelling’s T2
statistic is the multivariate version of the t-test. The test

requires a large sample to provide a close to exact significance level ++todo how

close++ . An exact significance level can be obtained regardless of the underlying

distribution by use the permutation distribution of Hötelling’s T2. ++todo

What is the in reference to: pg 176 (freedman) page 177 (efron).++

The procedure, algorithm is in(P. I. Good and James W. Hardin, 2009, page 77).

++todo add algorithm++ This or randomizationTest.

See also the section on MANOVA.

Robust Hotelling’s Tsq

A test robust to outliers (including R code) is given by roelant2008 it uses robust

estimation of scale and scatter.

13.1 MANOVA

13.2 Multivariate Ordered Categorical Data

Testing of hypothesis for multivariate ordered categorical variables is known to be

a difficult problem (see Pesarin and Salmaso, 2006) especially when testing for

stochastic dominance. Likelihood ratio tests are particularly difficult.

An extension to multivariate version of the two-sample design with stochastic

dominance alternatives, also called component-wise stochastic dominance. T
⋆2
MD
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corresponds to Hötelling’s T
2 statistic for two-sample testing for multivariate cat-

egorical variables. ++todo There is another section on multivar ord

cat.++



14 Dependent Observations

Many statistical methods are not applicable when the observations are not indepen-

dent. Serial correlation can invalidate most parametric and nonparametric methods

for computing probability statements such as a confidence interval and p-values.

Examples of dependent observations are

Repeated measures Repeated measures on a single experimental unit. One op-

tion is to treat the series of observations on a single unit as a single multivariate

observation; ++todo Check Good cite section.++ Good (P. I. Good,

2006, section 5.6), Pesarin (Pesarin, 2001, chapter 11) provide permutation

tests. Standard modeling approaches are mixed-effects models or GEE.

Clusters Data gathered from a group who may share experiences, education, val-

ues, or other group characteristics. If stratification is not appropriate: treat

each cluster as a single observation and use a summary statistic as in §11.1

and Mosteller and J. W. Tukey (1977). ++todo Look at these.++

Cluster statistics are unlikely to be identically distributed, variances of the

statistics may depend upon the size of each cluster, hence, a permutation test

based on the statistic is not exact. If the data has many clusters P. I. Good

and James W. Hardin (P. I. Good and James W. Hardin, 2009, page 81) rec-

ommends using the bootstrap, where the samples are drawn on the clusters

rather than the individual observations.

Question is, why is bootstrap OK and the permutation test is not. See sect

on bootstrap §9.8. ++todo Describe why bootstrap OK not permu-

tation.++
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Pairwise dependence When data have the covariance is the same for each pair

of observations. The permutation test ++todo For clusters, correct.++

is exact if the observations are normally distributed and almost exact oth-

erwise Erich L Lehmann and J. P. Romano (2005). ++todo Check on

this.++

Group randomized trials See P. I. Good and James W. Hardin (P. I. Good and

James W. Hardin, 2009, page 82) taken from Feng et al. (Braun and Feng,

2001). ++todo Check on Feng cite.++

Moving average or autoregressive process For discussion see Brockwell and

Davis (Brockwell and R. A. Davis, 1987).

Alonso, Litiére, Mohlenberghs (Alonso, Litiére, and Molenberghs, 2008) evaluate

misspecifying the random-effect distribution on inferential procedures.

Hardin and Hilbe (J. W. Hardin and Hilbe, 2003, page 28) specify the correlation

for population-averaged Generalized Estimation Equationss (GEEs) models.

Heidelberger and Welch (Heidelberger and P. D. Welch, 1981) discuss the con-

struction of a confidence interval when data are serially correlated.



15 Repeated Observations

Repeated measures is one form of dependent observations. Other forms are clus-

tering , pairwise dependence, and group-randomized trials. Repeated measures are

sequential observations on a single experimental unit (e.g., subject, group within a

session, session).

We can analyze repeated measures by aggregating the time series of an experi-

mental unit into a single multivariate observation, by repeated-measures ANOVA,

by a mixed-effects model or GEEs.

Probability statements directly asymptotically bootstrapping or by using ran-

domization or permutation tests (see Pesarin, 2001; Pesarin, 2010, Chapter 11) P. I.

Good (and 2010, Section 5.6).

15.1 Power Repeated measures

15.2 Aggregate Single Observation

A
ggregate repeated observations to a single statistic. ++todo Aggregate

Hand++ One simple method of repeated observations is to combine the

observations into a single statistic. While it simplifies the problem, there is loss of

information.
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16 Traditional MANOVA

and ANOVA

16.1 Unstructured Multivariate Approach

MANOVA

The unstructured multivariate approach (normal-theory) applies MANOVA and

Hötelling’s T2statistic,

X =
(

X1,Y X2, . . . ,XP

)

(16.1.1)

=

(

Y1, . . . ,
)

, (16.1.2)

where

P = number of periods . (16.1.3)

Each observation is a vector of observations for each period (trial). The test requires

the sample size to be greater than the number of periods to estimate a (P × P)

covariance matrix. Hötelling T2 statistic is

T2
= ( ȳ − µo )

T
S
−1
p ( ȳ − µo )n, (16.1.4)

n − p

p(n − 1)
T2

∼ F . (16.1.5)

Hötelling’s T2 statistic requires that all multivariate observations be independent of

one another, that all observations are metric, and that the covariance matrix be the

same for all observations. It is applicable only to shift alternatives { F[x] = G[x− δ] },
and that there is a sufficient number of observations to estimate the covariance

matrix, that is, n > p.
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Based on power considerations, if the data have a distribution close to that of the

multivariate normal and the samples are large, the Hötelling T2 is the appropriate

statistic in the one-sample and two-sample cases.

The stated significance level cannot be relied on for small samples if the data

are not normally distributed (cite Davis, 1982; Srivastava and Awan, 1982).

Hötelling’s T2 is designed to test the null hypothesis of difference between the

distributions of two groups (for example, treated and untreated) against alternatives

that involve a shift of the k-dimensional center of the multivariate distribution. It

is not particularly sensitive to alternatives that entail a shift in just one of the

dependent variables. Boyett and Shuster (1977) provide a more powerful test, the

maximum t-test.

Friedman and Rafesky (J. H. Friedman and Rafesky, 1979) provide a multi-

variate generalization of the distribution-free, two-sample tests of Wald-Wolfowitz

and Smirnov, used for testing FX = FY against the highly nonspecific alternative

FX , FY . It is a generalization of a non-parametric runs test with the ordering

based on a minimal spanning tree.

To detect a simultaneous shift in the means of several variables, use Hötelling’s

T2; to detect a shift in any of several variables, use the maximum t; and to detect

an arbitrary change in a distribution use either Perasin’s method of nonparametric

combination or Friedman and Rafesky’s multivariate runs test.

Tests proposed by vanPutten.1987 and Henze (1988) offer advantages over

Friedman-Rafesky.

16.2 Univariate ANOVA

Univariate ANOVA treats time as a fixed factor.

yi j = µ+ αk + πi + τj + εi j

where

αk is the treatment,

πi is the random session effect,

τj is the fixed factor time, and

εi j is the error.

Σ = (σ
2
π + σ

2
ε )

*..
,

1 ρ

· · ·
ρ 1

+//
-
,

where

ρ = σ
2
π/(σ

2
π + σ

2
ε ) = Corr(yi j , yi j′) .
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If Corr(yi j , yi j′) is constant, then this is called sphericity, or circularity. That is,

the correlation between any pair of repeated observations is the same. This is not

a common condition in experimental economics.

Compound Symmetry

If the covariance matrix

Σ p =σ
2
a11

T
+ σ

2 I (16.2.1)

where

Corr(yi j , yi j′) = σ
2
a (16.2.2)

Corr(yi j , yi′ j ) =σ
2 (16.2.3)

Corr(yi j , yi j ) =0 . (16.2.4)

If compound symmetry holds, then the F-ANOVA statistic is more powerful test

than the Hötelling T2. If compound symmetry does not hold, then the ANOVA

F-test is anti-conservative (i.e., rejection decisions cannot be trusted).

If compound symmetry holds the F-ANOVA statistic is more powerful than

Hötelling’s T2; if compound symmetry does not hold then the F-test ANOVA is

anti-conservative , that is, rejection decisions cannot be trusted. In general the

ANOVA F-test holds if the sphericity condition holds.

The usual F-test is distributed as F(t−1), (t−1)(n−1), We can bound the critical

value by F1, (n−1), but F is very conservative, it will accept too often (i.e., not reject

enough). We can use the different bounds on the F-test to construct a classic

methodology:

1. Conduct usual F-test, if fail to reject H0, Stop. The Hypothesis is not signifi-

cant.

2. Conduct test using F1, (n−1), if reject H0, Stop. The Hypothesis is significant.

3. Estimate ε use the Huynh-Feldt test (1976). Use

Fε (t−1),ε (t−1)(n−1)

1

t − 1
≤ ε ≤ 1 .

See Sage page 26, anova v. manova. ++todo Do Huynh-Feldt++



17 Mixed-Effects models

Most EE are repeated measures experiments. N subjects are observed on each of k

successive occasions, which possibly correspond to different experimental conditions,

the ith subject yielding the observation yi j on the jth occasion, yi j may be a vector.

Graphic Place Holder

p | a / no mixed effect | \

| x a price/quantity | \ \

| b x a positive slope | \ \

| b x | \

| b

| With mixed effect each subgroup/cohort

q has a negative price/quantity slope.

They are usually replicated, a replication An experiment with n observations per

cell is to be distinguished from having n replications with one observation per cell.

The total is the same but the relevant sources of variation differ. Inferences from

replications have a broader scope than inferences from non-replicated experiments

++todo HOW++ .

EE are nested in the sense that each (subject %IN% group) appears under only

one treatment. We cannot evaluate interaction of subject or group with treatment.

Effects restricted to a single level of a factor are said to be nested within that factor.
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17.1 Regression

Treat time as a fixed factor, we construct

y = X β + ε, ε ∼ N (0, Σ pi
).

or

yi j = µ+ αk + πi + τj + εi j

where

µ = mean

αk = treatment effect

πi = (random/fixed) subject effect

τj = time fixed factor

εi j = error

Yit = Y +Tt + ei , (17.1.1)

where i = unit observed, t = treatment, with treatment t constant across units

(elements). The treatment-effect or stimulus-response relation may depend on the

unit or subject.

Yit = Y +Tit + ei , or Yit = Y +Tt + eit ,

In (17.1.1) there is a common distribution across t for errors. The following equation

Yt = Y +Tt + e

disregards interactions between treatments and units and the variations among units.

We see this in (17.1.1).

Diggle et al. Diggle et al. (2002, page 20) has an analysis of efficiency. The conse-

quences of ignoring correlation when it exists are incorrect inferences and estimates

are less precise than possible.

17.2 Random-Effects Models

Also called two-stage (or multi-stage models),

yi = Zibi + Xiβ + εi ,
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where

εi is the within-individual variation (stage 1), and

bi is the between-individual variation (stage 2)

follows from N. M. Laird and Ware (1982). Sketch an outline of the hierarchical

approach using a two-stage model. The first stage specifies the mean and covariance

structure for a given individual. (at the intra-individual level)

E (yi | βi ) = f i (βi ), and Cov(yi | βi ) = Ri .

E [yi | βi ] = f i (βi ), and Cov(yi | βi ) = Ri .

f characterizes the systematic dependence of the response on the repeated measure-

ment conditions for the ith individual (Xi ), Ri is a covariance matrix summarizing

the pattern of random variability associated with the data for the ith individual.

The second stage characterizes the inter-individual variation, consists of a model

for variation in the regression parameters βi , or random variation among individuals.

βi = Ai β + bi Ai = individual-specific information.

bi = error corresponds to the random component of inter-individual variation,

bi ∼ (0,D).

A model formulation and computational methods are described in Lindstrom

and Bates (M. J. Lindstrom and D. M. Bates, 1990), The variance-covariance

parameterizations are described in Pinheiro and Bates (Pinheiro and Douglas M.

Bates, 2000). The different correlation structures available for the correlation argu-

ment are described in Box, Jenkins, and Reinsel (G. E. P. Box, Jenkins, and R. G.

C., 1994), Littel, Milliken, Stroup, and Wolfinger (Littell et al., 1996), Venables and

Ripley (2002). The use of variance functions for linear and nonlinear mixed-effects

models is presented in detail in Davidian and Giltinan (1995).

17.3 Linear Mixed Effects

LME models

1. provide flexibility in modeling the within-group correlation,

2. allow balanced and unbalanced data in a unified framework,

3. flexibility to include multi-levels or nesting, and

4. efficient procedures exist for fitting mixed-effects models.
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Also called analysis of grouped data, longitudinal data, repeated measures, blocked

designs, multilevel data, panel data (used in econometrics). Differences in approach

and interpretation depending on discipline.

The basic model is (Charles E. McCulloch, S. R. Searle, and Neuhaus, 2008,

Chapter 6, page 156)

E
[
yi j

]
= µ+ ai + βiεi j

where

µ = overall mean

ai = fixed effects

βi = random effects, and

εi j = error .

A (LME is not in glossary) model consists off two sets of effects plus a constant

and error term. Fixed effects are used for modeling the mean of y. Random effects

govern the variance-covariance structure of y. The main reason for random effects

is to simplify the task of specifying the N (N + 1)/2 distinct elements of Var yN×1.

In a clinical trial experiment a longitudinal design is used for

1. to increase sensitivity by making within subject comparisons,

2. to study changes (time measured in years, months, and days),

3. to use subjects efficiently

.

The design goals 1 or 2 are usually not design criteria in experimental economics.

The time frame for an EE is less than 2 hours, so the subjects them selves are

likely to change. However, EE designs consider measurements before and after an

intervention, such as, the announcement of relevant information. A crossover design

could be also used taking care of hysteresis. The most important reason may be

subject learning of both the rules of the experiment and the actions and reactions

of the other subjects.

For now we will assume that the random effects and errors are Gaussian and

the response variable is continuous. This does not include generalized linear mixed-

effects models Chapter 22.13. See also Diggle et al. (Diggle et al., 2002) .

Model factor as fixed or random effects

Fixed effects Make inferences about particular levels of a factor. Associated with

an entire population or with certain repeatable levels of experimental factors.
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Random effects Make inferences about population from which the levels are drawn.

Associated with individual experimental units drawn at random from a popu-

lation. Usually, levels correspond to different subjects or experimental units.

Mixed-effects models have both. See S. S. Searle, Casella, and C. E. McCulloch (S. S.

Searle, Casella, and C. E. McCulloch, 1992) and Vonesh and Chinchilli (Vonesh

and Chinchilli, 1997) who provide a comprehensive overview. Common features :

• Repeated response measurements taken on a number of different units (indi-

viduals).

• Dependence (linear or nonlinear) of the response y on a set of unknown pa-

rameters, β, for each unit.

• Response profiles are similarly shaped across individuals, but may have differ-

ent values of the parameter vector β for different units

• A non-homogeneous pattern of within-individual variability. Possible devi-

ations include serial correlation, and a dependence of variability on mean

response.

• Inter-individual variability between parameters that may be considered ran-

dom, to be related to individual-specific characteristics.

17.4 Basic Model

See Pinheiro and Douglas M. Bates (Pinheiro and Douglas M. Bates, 2000, page

58). Single Level grouping based on N. M. Laird and Ware (1982).

For m experimental units (or group), let ni be the size (which could be one) of

each unit i = { 1, . . . ,m }, and let yi be a ni-dimensional be response vector for the

ith experimental unit. m is the number of experimental sessions or groups (a group

could contain a single person).

yi = Xiβ + Zibi + εi , i = 1, . . . ,m (17.4.1)

where bi ∼ N (0,Ψ), and εi ∼ N (0,σ
2
I) is a ti × 1 vector of within-session errors.

• Xi is a ti × b design matrix (or known fixed effects) for session i.

• β is a b× 1 vector of regression coefficients (for fixed effects),

• bi is a g × 1 vector of random effects for session i,

• Zi is a ti × g design matrix (or known random effects) for session i (regressor

matrices what is?), The columns of Zi are usually a subset of Xi , and
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• ti is the number of periods in session i.

bi , b́, εi, and εi′ are independent for all i and i
′.

Ψ is a (q × q) symmetric and positive semi-definite matrix. Note the indefinite

model can always be re-expressed as a lower dimensional positive-definite model. bi

has a mean of 0, any non-zero mean for a term in a random-effects model must be

expressed as part of the fixed-effects terms. For computation we define:

Ψ−1

1

σ
2

= ∆T∆

since Ψ is positive definite ∆ exists but need not be unique. ++Find ref refer-

ence?++ .

17.5 Estimation

There are a number of methods to compute the MLE. ML estimates of the variance

components σ
2
εand σ

2
b tend to underestimate. An alternative is REML (). See

Patterson and Thompson Patterson and Thompson (1971) Harville (Harville, 1977)

.

The Bayesian framework corresponds to assuming a locally uniform prior for the

fixed-effects β and integrates them out of the likelihood.

ML is invariant to one-to-one transformations of the fixed effects, REML is not

invariant so likelihood ratio tests are not valid for testing fixed effects because there

is a term that changes with a change in fixed effects. The essential difference of the

estimates is σ̂2
=

∑

()
2/n with ML and σ̂2

=

∑

()
2/(n − p) with REML.

Optimization of likelihood see Mary J. Lindstrom and Douglas M. Bates (1988), Long-

ford (1993), N. M. Laird and Ware (1982), ++todo Is there a 1983 Laird Ware

or is it 82?++ Dempster, N. Laird, and D. Rubin (1977), ++todo 1979 or

1977++ Pinheiro and Douglas M. Bates (2000) for LME.

EM ++todo EM is?++ iterations and Newton-Raphson iterations, also

Quasi-Newton (Thisted). EM quickly brings parameters into range but converges

slowly. Newton-Raphson is more computationally intensive, can be unstable far

from optimum but close to optimum converges quickly. Hybrid approach is to use

EM the Newton-Raphson.

For inference on parameters, the approximate distribution of MLE and REML

estimates derives from asymptotic results. Pinheiro (1994) finds that under certain

regularity conditions the MLE of LME and REML estimates are consistent and

asymptotically normal.

The general method for fitting nested models is the LRT Erich L Lehmann and

J. P. Romano (2005). It can be used when REML and both models have the same
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fixed-effects specification. A statistical model is nested within another if it is a

special case of the other model. For example, let

y = α + β1x1+β2x2 + ε

Some nested models are:

y = α + 3x1 +β2x2 + ε

y = α +β2x2 + ε

A non-nested model is:

y = α + bz +β2x2 + ε

If you use REML to estimate the parameters, then you can only test if the fixed

effects are the same.

To make comparisons the AIC, (Akaike, 1974) and Sakamoto et al. (Sakamoto,

Ishiguro, and Kitagawa, 1986), and the BIC, Schwarz (Schwarz, 1978), are usually

used.

AIC = −2 ℓ(θ̂ | y) + 2n

BIC = −2 ℓ(θ̂ | y) + 2n log(n)

where n = the number of parameters.

Use the ++todo From P and B page 84++ LRT to evaluate the significance

of terms of the random-effects structure. Stram and Lee (1994) argue this is a

conservative test; i.e., the for χ2
k2−k1

is greater than it should be. The more

restricted model has parameters set on boundary, e.g., 0. Possible to simulate

++todo what?++ .

17.6 Assessing Models

A long used measure for assessing a linear model is the R
2. R

2 is the sum of squares

due to the fitted model divided by the total sum of squares. It is usually not used

to assess model fit for comparison since it does not penalize for the number of

parameters in a model.

R
2 cannot determine if there are too many parameters in a model, the addition

of noise (a variable) will increase the R
2. Criteria like Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) penalize the likelihood function for

the number of parameters in a model. ++todo Is it only nested models.++

Minimum Description Length (MDL), a totally different approach that over-

comes the limitations of AIC and BIC. There are several measures stemming from

MDL, like normalized maximum likelihood or the Fisher Information approximation.
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The problem with MDL is that its mathematically demanding and/or computation-

ally intensive.

Parametric Bootstrap, which is quite easy to implement.

When stipulating normally distributed errors (and other assumptions)

AIC = −2 ln(likelihood) + 2k, and

BIC = −2 ln(likelihood) + ln(N )k ,

where

k = model degrees of freedom, and

N = number of observations .

Both are based on a maximum likelihood estimate penalized by the number of free

parameters to try to avoid over fitting.

The“best”model in the comparison group minimizesAIC orBIC.BIC penalizes

more than AIC when N is more than 7, so its application will produce simpler

models.

An informative and accessible derivation of AIC and BIC by Brian Ripley can

be found here presentation, (ripley.derivation ).

AIC, there exist many adjustments (AICc) to account for certain conditions

which make the original approximation bad. This is also present for BIC. More

exact (but still efficient) methods exist, such as Fully Laplace Approximations to

mixtures of Zellner’s g-priors (BIC is an approximation to the Laplace approxima-

tion method for integrals).

It seems that there is no consensus on which is better or what to use; and there

is not much of a basis to make a comparison

17.7 Hypothesis Tests for Fixed-effects Terms

To make hypothesis tests on the fixed-effects terms the LRT can be defined for ML

fits of a model only (not for REML fits). However, it is not recommended, the LRT

tends to be anti-conservative and sometimes very much so, Littell et al. (see 1996,

section 1.5).

Another approach (Pinheiro and Douglas M. Bates, 2000, pg 89–90) is to con-

dition on the estimates of the random-effect variance-covariance parameters, using

conditional tests. In Splus and R summary (result.lme) fixed effects.

The overall effect of a factor should be assessed with an ANOVA table not by

examining the p-values of the associated fixed-effect parameters. Splus/R ANOVA

(result.lme).

http://www.stats.ox.ac.uk/~ripley/Nelder80.pdf
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17.8 Multiple levels

A multiple level model (e.g., two nested levels of random effects) can be constructed

as ++todo As what++ .

Let yi j be the response vector, i = 1, . . . ,m, j = 1, . . . ,mi . m is the number

of first level groups (sessions), mi is the number of second-level groups within the

first-level groups (subjects), mi j is a vector of X. ++todo Fix this.++

yi j = Xi jβ + Zi, jbi + Zi jbi j + εi j

where

bi ∼ N (0, Ψ1),

bi j ∼ N (0, Ψ2),

εi j ∼ N (0, σ
2 I),

and where

Xi j is a ni j × p matrix,

Zi, j is a ni × q1 matrix,

Zi j is a ni × q2 matrix,

bi is a q1 dimensional vector, and

bi j is a q2 dimensional vector.

bi , bi j , and εij are independent for all i.

Some of the literature calls this model a three-level model, because it has three

levels of random variation. The experimental design literature calls this a two-level

model because it has two levels of nested levels.

17.9 Heterogeneity

The basic model is flexible but restricts within-group errors to be independent and

identically distributed with E [ε] = 0, and Var(ε) = σ
2. The within group errors

can be specified as heteroscedastic (unequal variance) or correlated or both.

yi = Xiβ + Zibi + εi i = 1, . . . ,m

bi ∼ N (0,Ψ)

εi ∼ N (0, σ
2
Λi )

where Λi is a positive definite matrix parameterized by a small fixed set of param-

eters λ, and bi and εi are independent for all i.

Charles E. McCulloch, S. R. Searle, and Neuhaus (Charles E. McCulloch, S. R.

Searle, and Neuhaus, 2008, page 177) prefer ML and REML to (ANOVA is not
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in glossary) as does S. S. Searle, Casella, and C. E. McCulloch (1992). They give

the following reasons:

Maximum Likelihood (ML) and (REML is not in glossary) are based on the

well-respected maximum likelihood principle; but if any solutions are negative you

have to make an adjustment (Charles E. McCulloch, S. R. Searle, and Neuhaus,

2008, page 37–40,Sect. 2.2.b).

ML provides an estimate of fixed effects, REML does not ++todo Check if

true++ . REML for balanced data solutions (not estimators) ++todo check

what++ are (ANOVA is not in glossary) and despite their ability to be negative

are minimal variance unbiased under normality, and minimal variance quadratic

otherwise. There is no guarantee for unbalanced data.

Restricted Maximum Likelihood (REML) uses the degrees of freedom for fixed-

effects model, this is important when the rank of X is large in relation to sample

size. ++todo Large - meaning what?++ Because β is not involved in REML,

the estimate of variance components are invariant to β.

REML is not as sensitive to outliers as ML (vebyla1993 ).

Hastie and Robert Tibshirani (2000).

17.10 Bootstrapping Mixed-Effects Linear Model

In any bootstrapping procedure sampling must maintain a model structure.

To bootstrap in a mixed-effects linear model you would do sampling with re-

placement in a way that maintains a model structure.

So your data is divided into groups and you do not want to mix the data from

one group into the data from another.

Temp psuedo code display

For i = 1 to number of samples

--->For j = 1 to number of groups Ng

------>group j has mj observations

------>sample (Sj) with replacement from the group of observations

--->End For j

---> (S1, \ldots, SNg) is the bootstrap sample

--->Fit a model with bootstrap sample
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--->Collect estimates bi and errors ei

End For j

With collected estimates can construct bootstrap confidence intervals.

The simplest is Efron’s percentile method which takes the 2.5 percentile and the

97.5 percentile from these ordered bootstrap estimate to be the endpoint of a 95

percent confidence interval.

Efron and Tibshirani’s B. Efron and R. Tibshirani (1993)

Efron and Tibshirani B. Efron and R. Tibshirani (1986)

17.11 Bayesian Mixed-Effects Models

Maximum a posteriori estimation.



18 Data Presentation

At their best, graphics are

instruments for reasoning.

Tufte (2012)

As researchers we want other researchers to read our research. One way to make

research accessable is to ensure that it is readable. The visual presentation of your

statistical information might decide whether someone understands what you are

trying to say. In the next few sections I present a few ideas for data presentation.

18.1 You have the data, now what?

• Data collection and processing.

• Computation of test statistics.

• Interpretation of results.

• Presentation of results; graphical and tabular; not in statistical jargon; the

statistical tests in the appendix.

• Graphical illustrations should be simple and pleasing to the eye and avoid

purely decorative features—good graphical displays use most of the ink to

convey important information P. I. Good and James W. Hardin (see 2009,

page 149).

161



CHAPTER 18. DATA PRESENTATION 162

Graphic pointers:

• Do not connect discrete points, they may be misinterpreted as a continuous

data values.

• Do not use more dimensions in the display than the data has.

• No pie charts.

• The graphic and caption should include all salient information; in isolation

the graphics message should be apparent to another person.

Examples of good and bad graphics reside at bad graphics. Also, J. W. Hardin

and Hilbe (J. W. Hardin and Hilbe, 2003, pages 143–167) describes graphics for

assessing model accuracy.

18.2 Making Visual Displays

18.3 Principles for Effective Visual Display of Data

ACCENT

The essence of a graph is the clear communication of quantitative information. The

ACCENT principles emphasize, or accent, six aspects which determine the effective-

ness of a visual display for portraying data. ++todo Set up definition list++

Web page of good and bad graphic examples: graphic examples

Apprehension: Ability to correctly perceive relations among variables. Does the

graph maximize apprehension of the relations among variables?

Clarity: Ability to visually distinguish all the elements of a graph. Are the most

important elements or relations visually most prominent?

Consistency: Ability to interpret a graph based on similarity to previous graphs.

Are the elements, symbol shapes and colors consistent with their use in previ-

ous graphs?

Efficiency: Ability to portray a possibly complex relation in as simple a way as

possible. Are the elements of the graph economically used? Is the graph easy

to interpret?

Necessity: The need for the graph, and the graphical elements. Is the graph a

more useful way to represent the data than alternatives (e.g., table, text)?

Are all the graph elements necessary to convey the relations?

http://www/math.yorku.ca/SCS/Gallery
http://www.datavis.ca/gallery/index.php
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Truthfulness: Ability to determine the true value represented by any graphical

element by its magnitude relative to the implicit or explicit scale. Are the

graph elements accurately positioned and scaled?

“Blind Lemon Jefferson, the great blues musician, was once asked why there

were so few white blues-men. He replied, Knowin’ all the words in the dictio-

nary ain’t goonna help if you got nuttin’ to say.”

Adapted from Burn (1993). ++todo Is there a better set of criteria,

Wilkinson, 2005 grammar of graphics, Tukey++

See Van Belle, 2002, aberrant values are more apparent in graphics, and Chance

22:1, winter 2009, pg 51; Friendly and Kwan (2009) for collinearity biplots, Sarkar

lattice vis; cleveland visual 1993; Cleveland’s Elements (Cleveland, 1994).

Graphics for visualizing a single set of data:

• One-way strip chart, symbol at each data point darker/thicker if more than

datum at a point.

• Box plot: 0, 25, 50, 74, 100% quartiles, interquartile range (IQR) = box

around 25th to the 75th percentile of the distribution.

• Combination box and strip chart.

• Box and whiskers plot (see recent Am Stat).

Box Plots

++todo Check if the word should be box plots or box-plots?++

Box plots were invented by Tukey for EDA. Showing nonparametric statistics,

box plots have proven to be quite a good exploratory tool, especially when several

box plots are placed side by side for comparison. The most striking visual feature

is the box which shows the limits of the middle half of the data (the line inside the

box represents the median). Extreme points are also highlighted. Box plots show

not only the location and spread of the distribution of the data but also indicate

the skewness or asymmetry of the distribution. A box-plot summarizes a great deal

of information very clearly; it is good at showing up errors—efficiency should not

be greater than 100% or negative.

A box plot displays the center half of the data (the box) with the median marked.

The top and bottom of the box are defined by the hinges (see below). By default,

whiskers are drawn to the nearest value not beyond a standard span from the hinges.

Points beyond the end of the whiskers (outliers) are drawn individually.

Splus/R note. Specifying range = 0 forces the whiskers to span the full data

range. Any positive value of range multiplies the standard span by range.
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The standard span is 1.5 × (upper hinge − lower hinge). See Frigge, David C.

Hoaglin, and Iglewicz (1989) for implementations of the boxplot. Dümbgen and

Riedwyl (2007) On Fences and Asymmetry in Box-and-Whiskers Plots.

Graphic Place Holder

Put a box plot image example

As original defined by Tukey a box plot uses hinges for the lower and upper

limits of the box. The hinges are the median value of each half of the data where

the overall median defines the halves. Hinges are similar to quartiles. The main

difference between the two is that the depth (distance from the lower and upper

limits of the data) of the hinges is calculated from the depth of the median. Hinges

often lie slightly closer to the median than do the quartiles. The difference between

hinges and quartiles is usually quite small.

Graphic Place Holder

Show difference in hinges and quantile for boxplot

++todo Show difference in hinges and quantile for boxplot++

Many statistical packages and elementary statistics books replace the hinges

with the first quartile (q1) and the third quartile (q3). The distance from q3 to q1

is called the inter-quartile range. The whiskers (lines with crosses on them) extend

to the furthest points still within 1.5 inter-quartile ranges of q1 and q3. Beyond the

whiskers, all outliers are shown. Often the outliers up to a specified distance (e.g.,

3 inter-quartile ranges beyond q1 and q3) are displayed by a different symbol than

the outliers beyond the specified distance.

18.4 Box and Whiskers Plot

Box-and-whiskers plots display five-point summaries and potential outliers in graph-

ical form.

To constuct a boxplot:

1. Determine the 5-point summary for the data.

2. Draw on graph paper a box extending from Q1 to Q3.

3. Inside the box, draw a line that locates the median.
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4. Calculate the interquartile range (IQR = Q3 − Q1)

5. Calculate fences 1.5 hinge-spreads below and above the hinges:

a) The lower fence FenceLower = Q1 − 1.5 IQR.

b) The upper fence FenceUpper = Q3 − 1.5 IQR.

c) Do not plot these fences.

6. Any value above the upper fence is an upper outside value. Any values below

the lower fence is a lower outside value. Plot these values separate points on

the graph.

7. The largest value still inside the upper fence is called the upper inside value.

The smallest value still inside the lower fence is the lower inside value. Drawn

whiskers from the upper extent of the box (upper hinge) to the upper inside

value, maximum, and from the lower extent of the box bottom hinge to the

minimum.

Graphic Place Holder

Show a box and whisker plot. See

wp2/stats/boxWhiskerExampleComplex.pdf

18.5 Interpretation of boxplots

Boxplots show less detail than stemplots, but still provide insight into the central

location, spread, and shape of a distribution.

When you look at a boxplot, consider the following elements:

Central location: The line in the box locates the median. In addition, the box

locates the middle 50 percent of the data.

Spread: The length of the box is called the hinge-spread. This corresponds to

++todo what++ . The IQR is a good quantifier of a distribution’s spread. In

addition, The whiskers from tip-to-tip (the whisker-spread) quantifies its spread.

The maximum and minimum are visible as well.

Shape: Shape is difficult to judge except when the sample is large, in which case

symmetry or lack of symmetry will be visible.

See D. C. Hoaglin, Mosteller, and J. W. Tukey (1983), R. McGill, J. W. Tukey,

and Larsen (1978), John W. Tukey (1990), and P. F. Velleman and D. C. Hoaglin

(1981).
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Histograms

References

Sachs (Sachs, 1984, pages 53–54) provides a method for calculating the number of

classes k ≃ 1+ 3.32 log n, and a constant class width b ≈ √xmax − xmin . Other avail-

able methods for calculating the number of classes are Sturges, Freedman-Diaconis,

and Scott.

See Venables and Ripley (2002), and Denby and Mallows (2009),

Pie Charts

Pie charts are common in business and popular economics, but rare in academic

publishing or scientific research. They are generally not recommended and the

same data can be displayed in a bar chart. If pie charts are used it is recommended

to use them only when the sum of all categories is meaningful, for example, for

percentages of a whole.

Visual research shows that comparison by angle is less accurate than comparison

by length ++todo by AT&T Bell Laboratories when++ . Compare pie

chart and bar chart for the same data. Most subjects have difficulty ordering the

slices in the pie chart by size; when the bar chart is used the comparison is much

easier (Cleveland, 1994, pages 86–87).

It is easier to compare length than to compare area to see a difference among

categories.

Wilkinson (Wilkinson, 2005, page 23) critizes the pie chart, Tufte (tufte2001 )

++todo check which tufte book++ says do not use, as does van Belle (Van

Belle, 2008, pages 160–162).

Remark 18-1

The earliest known pie chart is credited to William Playfair’s Statisti-

cal Breviary of 1801 Playfair, 2005. Florence Nightingale (1820–1910)

published a polar area diagram in “Diagram of the causes of mortality

in the army in the East” in Notes on Matters Affecting the Health, Ef-

ficiency, and Hospital Administration of the British Army and sent to

Queen Victoria in 1858. �

18.6 Making Tables

18.7 Making Tables and Growing Cucumbers
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The graphical method has considerable superiority for the exposition of

statistical facts over the tabular. A heavy bank of figures is grievously

wearisome to the eye, and the popular mind is as incapable of drawing

any useful lessons from it as of extracting sunbeams from cucumbers.

(A. B. Farquhar and H. Farquhar (1891, pg. 55))

Despite the admonishment from Farquhar and Farquhar, tables are the format

choice of many researchers (see Feinberg and Howard Wainer, 2011). Three rea-

sons why this might be so are

• data is usually stored in a table, either in a text file or and EXCEL type data

sheet,

• Tables are easy to prepare, and

• data extraction is easy from tables.

A table uses icons (numbers) to convey information and one way to make tables

more comprehensible is to use space, the judicious placement of the data in the xy

plane of the table (just as is done in a graph.) There are three constructs ++todo

is constructs correct word++ to improving the table:

• rounding,

• emphasize summary statistics, and

• meaningful ordering of rows and columns.

Rounding

++todo check article Yucel, He, and Zaslavsky (2008)++ .

We have all seen (and if you are like me constructed) tables with numbers

written to four digits or more. I do not know what I was thinking, but I and most

people cannot comprehend more than two or three digits easily; usually, do not care

about accuracy of more than three digits; and usually cannot justify more than three

digits of accuracy statistically, Cleveland and Robert McGill (Cleveland and Robert

McGill, 1984) performed psychophysical experiments to confirm this. More digits

in a list of numbers make it harder to compare them. For example, in Table 18.1

lists made up revenues (in dollars) for five companies, it also lists the revenues in

billions of dollars. A natural spoken statement of revenue for firm A is 256 billion

dollars; we would usually not recite the 12 digits of the revenue in dollars. I see the

entries in the column labelled Billions of dollars easier to compare.

Sometimes the argument against rounding is that we are compromising accuracy.

Numbers should not be presented with any more accuracy than is statistically or
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Table 18.1. Example of Rounding.

Percent

Corporation Revenue ($) Billions ($) error

A 256,328,236,345 256 0.1

B 232,893,222,185 233 0.3

C 186,125,234,483 186 0.1

D 122,834,293,784 123 0.7

E 119,382,398,812 119 0.3

computationally justified. To explain statistical accuracy, suppose the mean of a

set of auction prices is 10.7263 with a standard deviation of σ. For fourth digit

accuracy the standard error would have to be less than 0.00005. The sample size

(n, the number of observations) that can justify this level of accuracy is:

standard error = 0.00005 = σ/
√

n (18.7.1)
√

n /σ = 1/0.00005 = 20,000 (18.7.2)

n = (20,000)
2
= σ400 million. (18.7.3)

So a large sample size is necessary for fourth digit accuracy. Increasing the sample

size increases the level of accuracy of the calculated mean.

For a guide to the appropriate number of digits see Ehrenberg (Ehrenberg, 1977)

and van Bell (Van Belle, 2008, table 7.4).

Emphasize important data

When constructing a table it is often important to provide summary statistics, usu-

ally the last row or column, to make it easier to emphasize differences in between

columns or rows. Making the summary statistics bold and spaced further apart

from the other columns or rows, will draw the eye to them.

Ordering

Suppose we have performed several auction experiments grouped by four treatments.

And we now want to present the data, one row for each session. In what order do

we list the sessions? If our emphasis is on efficiency in the table we should list

the experiments so that the lowest (or highest) efficiency is presented first with the

rest subsequently ordered by efficiency. If we are most interested in revenue, then

the sessions should be ordered by revenue. This gives the reader an easy way to

compare sessions (or treatments); the lowest and highest efficiency is obvious, and

any sessions with similar efficiencies are clumped together.
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The Table

Once we have determined what goes into our table we have to format the table.

Here are some rules that are in common usage:

1. Never, ever use vertical lines1

2. Never use double lines.

3. Put the units in the column heading (not in the body of the table).

4. Always precede a decimal point by a digit; thus 0.1 not just .1.

5. Decimal points should line up in a column.

6. Do not use ‘ditto’ signs or any other such convention to repeat a previous

value. In many circumstances a blank will serve just as well. If it does not,

then repeat the value.

7. Put heavy lines at the bottom and top; heavier than the mid rules (middle

lines).

Dyke (1997)

The following is based on Koschat (2005). A substantial bibliography of aca-

demic research articles, a dedicated major research journal2, and several books3

attest to the importance of statistical graphics as an area of research.

Tables are indeed widely used, and in many statistical reports and research

papers more space is devoted to tables than graphs. Yet this obvious prominence is

barely reflected in the broader statistical discourse. Tables as displays of information

are rarely a topic in statistical education, are rarely a point of discussion in statistical

practice and, within the field of statistics, do not appear to receive much, if any,

attention from researchers.

An early contribution on the design of statistical tables to the statistical litera-

ture is Walker and Durost’s text (Walker and Durost, 1936). Since, most articles

on this topic have been published mostly by a small handful of researchers, notably

Ehrenberg Ehrenberg, 1981; Ehrenberg, 1986 Wainer (H. Wainer, 1992; H. Wainer,

1997a; H. Wainer, 1998; H. Wainer, 1993) and Tufte (Tufte, 2003). The latter two

authors acknowledge tables as a valuable format for communicating information in

their books Tufte (Tufte, 1990; Tufte, 1997; Tufte, 1983; H. Wainer, 1997b), but in

1A line is called a rule by typographers. ++todo Check in package booktabs; if by

typographers.++
2The Journal of Graphical and Computational Statistics
3John W. Tukey, 1977; Mosteller and J. W. Tukey, 1977 and Chambers et al., 1983 and Cleve-

land, 1994
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the statistical community these texts are mostly referred to for their consideration

of statistical graphics. Outside statistics, books on document design occasionally

have sections on the construction of tables (Bigwood, Spore, and Seely, 2003; Harris,

2000; Shriver, 1997).

The prescription for the design of a table is straightforward. Arrange numbers—

and it is usually numbers— in parallel rows and perpendicular columns. A table is

a simple structure for arranging numbers. These two defining attributes— the well-

known structure and the use of numbers—provide the major rationale for using

tables. There is an implied commonality to all the numbers in the same row, and

to all the numbers in the same column. This common understanding of a table’s

structure is a good reason to use tables. There are other good reasons for using

tables, for example:

• A numerical display often presents data in their original form.

• Data presented in numerical form can be easily manipulated and transformed,

a graphical display might need interpolation to recover a number.

• Numbers in a table usually need less of an explanation than the elements of a

graphical display.

For the table to be an effective display of data, its entries must be easy to

compare; entries and comparisons that are of special interest should be prominently

displayed and easy to find.

Choice of Columns and Rows

A first step in the construction of a table requires a decision on which entries to

arrange in rows and which entries to arrange in columns. In general, numerical

comparisons are easier made within columns than within rows, this is supported by

research by Hartly (Hartly, 1981; Hartly, 1985).

Arrangement of Rows and Columns

Of equal importance are the relative arrangement of rows and the relative arrange-

ment of columns. Rows whose entries one wishes to compare should ideally be

displayed close together, and the same holds true for the arrangement of columns.

Often the data themselves suggest such a grouping. For example, it may be use-

ful and informative to arrange rows such that the entries in the principal column

of interest appear sorted. Because we tend to read from left to right and top to

bottom, a table’s left upper quadrant is likely to receive most of a reader’s initial

attention. Hence one should consider arranging rows and columns such that the

entries of greatest interest fall into the left upper quadrant.
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Presentation of Numbers

It is usually not possible to arrange all entries that one should, or might want to,

compare in adjacent and vertically aligned positions. In such instances the reader

has to commit, however briefly, at least one of the numbers to be compared to

memory. The number of distinct digits that most people retain easily after a single

pass is more or less limited to seven (G. A. Miller, 1956). It is therefore good

practice to transform the data such that five digits or fewer represent each table

entry, if possible. Often this can be accomplished by adjusting the scale and, by

rounding, limiting the number of digits retained. Thus, rounding is an important

step with an additional benefit. Usually the left-most digits of a number are more

important than the digits to the right. Retaining too many digits hinders the reader

from paying attention to the more important digits.

Simple Graphical Elements

A table entry is characterized not only by its numerical value but by its position

within the table. The effectiveness of a table presentation depends in part on how

easy it is to determine an entry’s position within the table and to connect it to its

row and column labels.

Two simple graphical elements, lining and shading help as the redesigned table

in Table ?? illustrates. Shading changes the background color for selected rows

and columns, creating groups that are easier to compare. Lining refers to the judi-

cious and parsimonious addition of lines to the basic rectangular data display. The

emphasis is on judicious and parsimonious because, as in Figure ??, the problem

is often not that there are too few but that there are too many lines. Separating

each pair of adjacent rows and columns by a line results in a useless grid that does

nothing to help the reader orient herself. On the other hand, the horizontal lines

added to the table in Figure ?? define horizontal bands of five rows each, with

two complementary benefits. On the one hand, the bands are sufficiently wide and

distinct to be easily traceable as the reader’s glance moves from left to right

There are other typographical elements one can consider with benefits perhaps

similar to or complementary to lining and shading. Adherents of the minimal use of

ink school of thought might argue that in Figure ?? an effect similar to lining could

have been achieved simply by increasing the line spacing every five rows. Arguably,

an effect similar to shading could have been achieved by, instead of shading selected

cells, choosing a font distinct in type, style, or size for the entries in these cells.

Figure 6 includes an example of such alternatives.

The tabulation made explicit in Figure ?? is an essential step in the construction

of a histogram. This frequency tabulation, when first proposed more than 300 years

ago by John Graunt (see, Tapia and Thompson 1978), was duly acknowledged as an

important and original scientific accomplishment. In a standard histogram this step
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is implicit with the result that, in my experience, most readers— even those who

have received statistical training in the form of an introductory statistics course—

have difficulties interpreting them. On the other hand, few people have difficulties

interpreting the table in Figure 5 and subsequently interpreting the accompanying

bar chart.

Tables that present statistical results can be graphically enhanced.

Some other references in comments.

R coding tables

The apsrtable R package which offers an alternative display of Tables, compared to

xtable, and reporttools described in the JSS,

Temp R code display

library(Hmisc)

x=rnorm(1000)

y=rnorm(1000)

lm1=lm(y~x)

slm1=summary(lm1)

latex(slm1)

or given a dataset dta,

latex(summary(dta)).

R Coding test file output

Temp R code display

use print

print(summary(~x + y), prmsd=TRUE, digits=1)

capture or write to text file:

capture.output(print(summary(~x + y), prmsd=TRUE, digits=1),

file="out.txt")

use sink:

sink(file=output.txt, type="output");

print(summary(~x + y), prmsd=TRUE, digits=1),

sink(),
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18.8 What to Report

The assignment of experimental units to treatments and how they were randomized;

the assignment of subjects to experimental units; were they randomized individually

(experimental unit is the subject) to treatments or were treatments randomized to

groups of subjects (the experimental unit is the group).

1. Power and sample size calculations (prior).

2. Describe the assignment of subjects to treatments.

3. Detail exceptions and missing data.

4. Measures of dispersion and central tendency if applicable. Median, arithmetic

mean, geometric mean; standard deviation, standard error, or bootstrap con-

fidence interval.

5. Provide confidence intervals instead of p-values.

6. Any sources of bias.

7. Describe practical significance.

8. Formal statistical inference for predetermined hypothesis.

See Lang and Secic (Lang and Secic, 1997, page 177) for reporting or meta-

analysis.

Tufte (tufte ) for tables versus graph.

Parkhurst (Parkhurst, 1998) for arithmetic vs geometric mean.

When reporting p-values derived from nonrandom samples, it is best to provide

(and internalize) a disclaimer such

as “While, strictly speaking, inferential statistics are only applicable in the

context of random sampling, we follow convention in reporting significance lev-

els as convenient yardsticks even for nonrandom samples.” (Michael Oake) See

Michael Oakes’s Statistical inference: A commentary for the social and behavioral

sciences (Oake, 1986).

When reporting the mean, it is better to report the standard deviation rather

than the variance. The standard deviation is expressed in the same units as the

mean and it is easier to construct confidence intervals.



Part II

Two
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19 Individual Behavior

Studying individual behavior can be the either a primary or secondary purpose for

analysis.

For example see El-Gamal and Grether avoid the data snooping.
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20 Single-Case Designs

See Single-Case and Small-N Experimental Designs: A Practical Guide to Random-

ization Tests Todman (2001).

The usual inferential statistics are frequently invalid for use with data from

single-case experimental designs.

Randomization (Exact) tests can provide valid statistical analyses for all de-

signs that incorporate a random procedure for assigning treatments to subjects or

observation periods, including single-case designs.
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21 Testing Single Sample

Designs

21.1 Single-sample Testing

The most used type of this design is in theory testing. For example, is the market

price in the double auction the competitive equilibrium price? In this setting we

do not have randomization over treatments for causal inference of treatment effect;

there is no treatment effect.

The standard approach is to test the hypothesis H0 average price = competitor price,

and then to use a t-test or a nonparametric test. This begs the question, what is

the probability model used used for inference?

Suppose we have the results of three double auction sessions A, B, and C; each

with a series of observed prices.

Temp R code display

Give data series.

Plot a series of double auction prices

Find mean and variance of observed prices for each session

and overall.

Is the price close to the competitive equilibrium, does it converge? With mean

and variance v is 1.1. What does a variance of 1.1 say, is that small, large? How

are we to decide?
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If we construct a confidence interval around p-mean, we get pminus and pplus;

does the competitive equilibrium fall in the range? Problem, we cannot construct a

confidence interval because we have no probability model ++todo Check freed-

man for term.++ we have what Freedman call’s a get set. There is no sampling

distribution, no randomization to form probabilities.

One approach is to treat the data with EDA; we can give the data statistics

and make visual plots— in most experiments looking at the price series and we

can determine closeness or convergence. Statistical hypothesis testing, confidence

intervals have no inferential strength ++todo What is this.++

How strong is our conclusion, is it just an anomaly. Are the three sessions alike

or dissimilar.

If we want a statistical basis for our conclusions, we have to make specific our

question. What is the more specific question (hypothesis).

If we observe p that has t = p− pce distance from the ce; what is the probability

that we observe p close to pc.

Ho : p , pce, Ha : p = pce.

Probability of small, first we have to decide what is small and how to find the

probability of t.

We can treat the possible actions of the participants as our sample/observation

space.

Construct a one-sample randomization test

Ha

What is the probability that we observe the allocation efficient outcome if each

trade/nontrade is equally likely.

Say we have demand schedule p,q 10,4 8,3 6,2 4,1 and a supply schedule p,q 4,

1 6,2 8,3 10,4.

Derived from two buyers resale values (two), and two sellers costs (two). Let If

each buyer and seller are randomly matched we find the following distribution: F.



22 Possible Additions

22.1 Incomplete

The following sections are incomplete and are intended as suggestions for additional

chapters in either part I or II.

22.2 Meta-analysis

Meta-analysis is, in essence, a collection of techniques to synthesize the results of

a literature, often in conflict, and look at it as a coherent whole. See good.errors

page 110 provides guidance. See Lang and Secic 1997, reporting or meta-analysis

page 177 ff.

22.3 Brain Imaging

Fmri; Functional images JGCS 18:1, mar 2009, pg 216. anals applied stats, 2008

2:1 Stat Sci, 2008, 23:4, 439.

22.4 Text Analysis

22.5 Path Models

Reference (see D. A. Freedman, 2009, Chapter 6)
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22.6 Factor Analysis

Godino, Batanero, Jaimex 2001 and good.erros page 209. For principal compo-

nent analysis, see JCgraph stats, 18:1, 2009, p 201; Adaptive shrinkage; Dimension

reduction, stat sci, 2008, 23:4 pg 485–501.

Factor analysis is a.

Principal component analysis is a technique to decompose an array of numeri-

cal data into a set of orthogonal vectors (uncorrelated linear combinations of the

variables) called principal components.

22.7 Effect Size

Measures of effect size in ANOVA are measures of the degree of association between

and effect (e.g., a main effect, an interaction, or a linear contrast) and the dependent

variable. It is the correlation between an effect and the dependent variable. The

square is the proportion of variance in the dependent variable that is attributable

to each effect.

Four commonly used measures of effect size in ANOVA are

• eta squared, η2,

• partial eta squared, η2
p ,

• omega squared, ω2, and

• intraclass correlation, ρI .

η
2 and η2

p are estimates of the degree of association in the data. ω2 (fixed effect

models) and the intraclass correlation ρI (random effect models) are estimates of

the degree of association in the population. η2 is computed as

η
2
= SSeffect/SStotal .

One of the problems with η2 ++todo Is this correct++ its value is depen-

dent the other effects. For that reason many people prefer an alternative computa-

tional procedure called the η2
p . Some authors e.g., Tabachnick and Fidell (Tabach-

nick and Fidell, 1989) call η2
p an alternative computation of η2. η2

p is computed

as

η
2
p =

SSeffect

(SSeffect + SSerror)

it is the proportion of the effect and error variance that is attributable to the effect.

η
2
p differs from η2 in that the denominator includes the SSeffect plus the SSerror rather

than the SStotal.
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The sums of the η2
p values are not additive. They do not sum to the amount

of dependent variable variance accounted for by the independent variables. It is

possible for the sums of the η2
p values to be greater than 1.00. In general, η2

describes the amount of variance accounted for in the sample. An estimate of the

amount of variance accounted for in the population is ω2. Because η2 and η2
p are

sample estimates and ω2 is a population estimate, ω2 is always going to be smaller

than either η2 or η2
p .

From Murphy and Myors (1998) and Kirk (1982). The strength of association

between independent variable Y and dependent variables X , if both X , Y are numer-

ical can be computed by the linear correlation

r =

√

SSXY/SStotal .

++todo XY correct?++ When the independent variable is qualitative esti-

mates of strength of association between X and Y for a population. ρI (intraclass

correlation) and ω2 both indicate the proportion of variance in X accounted for

by specifying the Y treatment level classification. ρI applies to the random-effect

model ω2 applies to a fixed-effect model.

They are identical in general meaning (hayes1963 ) (referenced by Kirk 1982 Kirk

(1982))

ρ̂I =
(MSBG − MSWG)

(MSBG + (n − 1)MSWG)

see Haggard (Haggard, 1958) .

ω̂
2
=

(

SSBG − (k − 1)MSWG

)

(

SStotal + MSWG

)

WG = Within groups, BG = Between groups. MS Within groups is also called

MSerror. MS Between groups is also called MStreatment. The notation of Winer et al.

and others.

A significant F ratio for treatment effects indicates that there is an association

between X and Y . ω2 and ρI are measures that indicate the strength of the associa-

tion. An alternative method of interpreting the importance of sources of variation is

in terms of variance components. “An F ratio only provides information concerning

the probability that effects are or are not equal to zero, it does not tell us whether

effects are large or small.” ( (Kirk, 1982, page 127) ).

Variance components:

σ̂
2
β is an estimate of σ2

β (the variance of the means of the treatment populations).

σ̂
2
β =

(

MSB − MSresidual
)

n

Trivial effects can achieve statistical significance if the sample is sufficiently large (Kirk,

1982, page 135).
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22.8 Completely randomized factorial designs

ω̂
2
XA
=

(

(SSA − (p − 1)MSw.cell)
)

(

(SStotal + MSw.cell)
)

ω̂
2
XB
=

(

(SB − (q − 1)MSw.cell)
)

(

(SStotal + MSw.cell)
)

ω̂
2
XAB

=

(

(SSAB − (p − 1)(q − 1)MSw.cell)
)

(

(SStotal + MSw.cell)
)

If the value of ω̂ is negative, then set it to zero. If the F-statistic is significant

then the value of ω̂ will be positive (Kirk, 1982, page 198). ++todo proof of

this++

ρ̂(I)
XA
=

σ̂
2
B

σ̂
2
A + σ̂

2
B + σ̂

2
AB + σ̂

2
ε

Estimating the magnitude of experimental effects and statistical power (Winer,

1971, page 405). For completely randomized factorial designs with equal sample

sizes.

ω̂A
2
effect =

variance estimate for effect of interest

total variance estimate

The basis for constructing such estimates is the expected values of the mean squares dodd.schultz.1973

One index (of several possible) is:

ω̂
2
effect =

SSeffect − (dfeffect)MSerror

SStotal + MSerror

ω̂
2
α =

θ̂
2
α

θ̂
2
α + θ̂

2
β + θ̂

2
α β + σ̂

2
ε

For a 2 × 2 design with factors A and B

p = number of levels of factor A

q = number of levels of factor B

n = number of observations in each cell

xi jk = observation k in cell i j
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ABi j =

∑

k

xi jkn Ai =

∑

j

ABi jq

B j =

∑

i

ABi j p G =
∑

i

Aip =
∑

j

B jq

α̂i = Ai −G β̂ j = B j −G

θ̂
2
α =

∑

i α
2
i

p
σ̂

2
α =

∑

i α
2
i

p − 1

ε̂i jk = xi jk − ABi j

s
2
i j =

∑

k

ε̂i jk (n − 1)

MSerror =
∑

i

∑

j

∑

k

ε̂
2
i jk pq(n − 1)

MSa = nq
∑

i

(Ai −G)
2
(p − 1)

MSab =
n
∑

i

∑

j (ABi j − Ai − B j +G)
2

(p − 1)(q − 1)

Confidence Interval for Effect Size

The effect size is an estimate so we can calculate the confidence interval.

Cohen’s d is

d = *
,

n1 + n2

n1n2

+

d
2

2(n1 + n2 − 2)
+
-
(

n1 + n2

n1 + n2 − 2

)

(22.8.1)

the variance of Cohen’s d is

*
,

n1 + n2

n1n2

+

d
2

2(n1 + n2 − 2)
+
-
(

n1 + n2

n1 + n2 − 2

)

, (22.8.2)

where n1 and n2 are the sample sizes of the two groups being compared and d is

Cohen’s d. Taking the square-root of this variance gives the standard error of d.

22.9 Legal Evidence

See Good and Freedman.

22.10 Hints and Tools

A few hints to experimenters, when you design an experiment:
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• Specify important characteristics of the environment. Convince colleagues,

funders, engineers, or others that you do not have to throw in the kitchen sink

or replicate the market exactly.

• Write the instructions first, if you cannot write a simple set of instructions,

then you need to redesign your thinking about the problem.

• Formulate the statistical analysis before you run the experiments. It does you

no good if after the experiments you have data that are difficult to analyze.

Example of bad economic experiment see Mark Walker, Oliver Kim, The free

rider problem: Experimental evidence, public choice, 1984.

22.11 What to Do

When you design an experiment:

1. Write the instructions, if you cannot write a simple set of instructions then

you need to change your approach to the problem.

2. Formulate the statistical analysis. It does you no good if after the experiments

you have data that are difficult to analyze.

3. Specify important characteristics of the environment. Convince colleagues,

funders, and engineers that you do not have to throw in the kitchen sick or

replicate the market exactly.

4. Test software.

5. Test allocation/optimization algorithms.

6. Test instructions/descriptions to participants.

7. Find holes.

22.12 Other Things

Stochastic approximation, monte-carlo, robbins-, jcgs 18:1, march 2009, pg 184.

Review Guidelines

Papers with guidelines for reviewers:

Bacchetti (Bacchetti, 2002) , Finney (Finney, 1997) , Cherry (Cherry, 1998)

,Light and Pillemer (Light and Pillemer, 1984) ,Vaisrub (Vaisrub, 1985) .



CHAPTER 22. POSSIBLE ADDITIONS 185

22.13 General Linear Model

For design Issues of GLM, see Stat Sci 21/3 Aug/06 page 376.

22.14 Overview

The glm is a useful generalization of ordinary least squares regression. It stipulates

that the random part of the experiment (the distribution function) and the system-

atic portion of the experiment (the linear predictor) are related by a function called

the link function.

In a glm, the data (Y ) are assumed to be generated from a distribution function

in the exponential family (a very large range of distributions). The expected value

µ of (Y ) is

E (Y ) = E (Y ) = µ = g−1
(Xβ) (22.14.1)

where X is the experiment design matrix, β is a vector of unknown parameters, Xβ

is the linear predictor, and g is the link function.

The random component is a function V of the mean: ++todo Fix this.++

Var(Y ) = Var(µ) = Var (g
−1

(Xβ)). (22.14.2)

It makes computations easier if the variance is distributed as an exponential fam-

ily distribution. The unknown parameters β can be estimated with maximum-

likelihood, quasi-maximum-likelihood, or Bayesian techniques.

22.15 Components of the GLM Model

The General Linear Model (GLM) consists of three elements.

• A design matrix X known by the experimenter.

• A distribution function f, (usually) from the exponential family.

• A linear predictor η = Xβ, describing the expected value.

• A link function g such that E (y) = µ = g
−1

(η).

The exponential family of distributions contain the probability distributions,

parameterized by θ and τ, whose density functions can be expressed in the form

f y (y ; θ, τ) = exp

(

a(y)b(θ) + c(θ)

h(τ)
+ d(y, τ)

)

. (22.15.1)

τ, is called the dispersion parameter.The functions a, b, c, d, and h are known.
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Link functions

The link function provides the relationship between the linear predictor and the

distribution function (through its mean). There are many commonly used link

functions, and their choice can be somewhat arbitrary. However, it is important to

match the domain of the link function to the range of the distribution function’s

mean.

Table 22.1. Common link functions..

Distribution Name Link Function Mean Function

Normal Identity Xβ = µ µ = Xβ

Exponential Inverse Xβ = µ−1
µ = (Xβ)

−1

Gamma Inverse Xβ = µ−1
µ =

(

Xβ
)−1

Poisson Log Xβ = ln (µ) µ = exp (Xβ)

Binomial Logit Xβ = ln
(

µ

1−µ
)

µ =
exp (Xβ)

1+exp (Xβ)

Multinomial Logit Xβ = ln
(

µ

1−µ
)

µ =
exp (Xβ)

1+exp (Xβ)

22.16 Examples

Linear regression

The simplest example of a glm is linear regression. Here the distribution function is

the normal distribution with constant variance and the link function is the identity.

Binomial data

When the response data Y are binary (taking on only values 0 and 1), a natural

distribution function is the binomial distribution; µi is the probability of Yi taking

on the value one. The usual link function is the logistic function:

g(p) = ln

(

p

1 − p

)

. (22.16.1)

Any inverse CDF cumulative density function (CDF) can be used for the link

since the CDFs range is [0,1], the range of the binomial mean. The normal CDF

Φ is a popular choice and yields the probit model. Its link is

g(p) =Φ
−1

(p) .. (22.16.2)

Using the identity link for binomial data can be problematic as the predicted proba-

bilities can be greater than one or less than zero. The variance function for binomial

data is given by:

Var(Yi ) = τµi (1 − µi ) , (22.16.3)
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where the dispersion parameter τ is usually one. When it is not, a model called the

binomial with over-dispersion or quasi-binomial.

Count data: the Poisson

Count data are modeled by the Poisson distribution; the logarithm is used as the

link function. The variance function is proportional to the mean:

Var(Yi ) = τµi , (22.16.4)

where the dispersion parameter τ is usually one. When it is not, a model is called

the Poisson with over-dispersion or quasi-Poisson.



A R

A.1 What is R?

R is a system for statistical computation and graphics.1 It consists of a language

plus a run-time environment with graphics, a debugger, access to certain system

functions, and the ability to run programs stored in script files. It is free software

distributed under a GNU-style copyleft and is an official part of the GNU project

http://www.gnu.org/. 2

The inspiration for R is the S system from Bell Labs. The earliest begin-

nings of S came from discussions in the spring of 1976, among a group of five

people at Bell Labs: Rick Becker, John Chambers (the principal designer), Doug

Dunn, Paul Tukey and Graham Wilkinson. See http://cm.bell-labs.com/cm/

ms/departments/sia/S/history.html for further information on “Stages in the

Evolution of S”.

A.2 List of Helpful Web Sites

• R Installation and Administration (R-admin): http://cran.r-project.org/

doc/manuals/R-admin.html

• An Introduction to R: http://cran.r-project.org/doc/manuals/R-intro.

html

1Much of the following information is from the R project FAQ and introduction. R has a home
page at http://www.R-project.org/.

2More on the history and a detailed description can be found in the R FAQ and the introduction
to R.
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• The R FAQ: http://cran.r-project.org/doc/manuals/R-FAQ.html

• R Language Definition: http://cran.r-project.org/doc/manuals/R-lang.

html

• R data import and export: http://cran.r-project.org/doc/manuals/

R-data.html, a quide to reading from and writing to various formats, such

as spreadsheets, databases, and network connections.

• CRAN: http://cran.r-project.org/, The “Comprehensive R Archive Net-

work”CRAN is a collection of sites which carry identical material, consisting

of the R distributions, contributed extensions, documentation for R, and R

binaries.

• R-help Mailing List: http://www.r-project.org/mail.html Discussions

about problems and solutions using R.

A.3 Starting R

If the software is installed correctly, then entering the command R at the command
prompt will start an interactive R session. You should see something like the fol-
lowing:

R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"

Copyright (C) 2012 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: sparc-sun-solaris2.10 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

The last line with the ‘> ’ is waiting for your input. When you want to exit the
interactive R session enter ‘q()’, you should be asked the question

http://cran.r-project.org/doc/manuals/R-FAQ.html
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/
http://www.r-project.org/mail.html
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Save workspace image? [y/n/c]:

Enter ‘y ’ if you want to have your current work available next time you start an R

session, see §A.3 for more details.

Some basics

Here are some basic commands that you need to know:

> # prompt, commands are case sensitive

> q() # quit

+ # continuation prompt

# # comment

x <- 10 # assign 10 to x, x = 10

^c, ^break # interrupt

x <- 1:10 # assign vector 1, 2, \dots, 10 to x

a <- c( b, c ) # combine b and c into a: a <- c( 1/2, (1:3)^2 )

Getting Help

To get help for a command, type: ?command or help(command), for example,
to find information about the command anova enter help(anova) or ?anova at the
command prompt ‘> ’. See ?help for more details. For example,

help(anova) # or ?anova

returns

anova package:stats R Documentation

Anova Tables

Description:

Compute analysis of variance (or deviance) tables for one or more

fitted model objects.

Usage:

anova(object, ...)

Arguments:

object: an object containing the results returned by a model fitting

function (e.g., 'lm' or 'glm').

and so on ..

When you are finished reading the help file, enter a ‘q ’ to return to the R command

line.

Installing Packages
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##

## To install the package named "packageName" use the command

> install.packages("packageName")

## For example

> install.packages("knitr")

> install.packages("hmisc")

## It is a good idea to install one package at time

## so you can decipher any problems.

Reading and Writing Text files

The use of encodings, unless you need to write in a language other than english it

is best to keep to basic ASCII. Write to a text file to make things as portable as

possible. Includes things to watch for when exporting (writing) to text files:

• Precision

• Header line

• Separator

• Missing values

• Quoting strings

• Encodings

Input and diverting output to a file

If commands are stored in an external file, say commands.R in the current working
directory, then they may be executed in an R session with the command

> source("commands.R")

The function

> sink("output.lst")

given before the source command will divert all subsequent output from the console
to an external file output.lst. The command

> sink()

restores it to the console. When using the command line, command such as 2+2

prints the output to the console. In a sourced file values are not printed unless you

print it. To print a value use the print command, print(2 + 2). You can also use

source(file, echo=TRUE) to have all output printed.
Sometimes the output can be difficult to read, because of scientific notation. To

make the output more readable, set the option scipen.
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## do some simple calculations

x <- 3 + 3

print(x)

[1] 6

x <- sqrt(2)

print(x)

[1] 1.414

## Set the option

options(scipen = 5)

## do the same calculations again

x <- 3 + 3

print(x)

[1] 6

x <- sqrt(2)

print(x)

[1] 1.414

Data permanency and removing objects

The entities that R creates and manipulates are known as objects. These may be
variables, arrays of numbers, character strings, functions, or more general structures
built from such components. During an R session, objects are created and stored
by name. The R command

> objects()

## or alternatively

> ls()

can be used to display the names of (most of) the objects which are currently
stored within R. The collection of objects currently stored is called the workspace.
To remove objects the function rm is available:

> rm(x, y, z, ink, junk, temp, foo, bar)

##

## cleaning up workspace, removing all objects use:

##

> rm(list = ls(all = TRUE)).

All objects created during an R session can be stored permanently in a file for

use in future R sessions. At the end of each R session you are given the opportunity

to save all the currently available objects. If you indicate that you want to do this,
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the objects are written to a file called .RData5 in the current directory, and the

command lines used in the session are saved to a file called .Rhistory.

When R is started at later time from the same directory it reloads the workspace

from this file. At the same time the associated commands history is reloaded.

To avoid strange errors and complications, only ‘A-Za-z0-9’ should be used in

variable names and blanks should not be used in directory or filenames.

Commands are separated either by a semi-colon (‘;’), or by a newline. Elemen-

tary commands can be grouped together into one compound expression by braces.

Comments can be put almost anywhere, starting with a hashmark (’#’) everything

to the end of the line is a comment.

Recall past commands

The vertical arrow keys on the keyboard can be used to scroll forward and backward

through a command history, it can then be edited.

Display graphics

Lattice functions such as xyplot() create a graph object, but do not display it

(the same is true of ggplot2 graphics, and Trellis graphics in S-Plus). The print()

method for the graph object produces the actual display. When you use these

functions interactively at the command line, the result is automatically printed,

but in source() or inside your own functions you will need an explicit print()

statement.

Give a graphic example.

% print variables

% print(x)

++todo Give a plot graphic Example.++

Accuracy

The only numbers that can be represented exactly in R’s numeric type are integers
and fractions whose denominator is a power of 2. Other numbers have to be rounded
to (typically) 53 binary digits accuracy. As a result, two floating point numbers will
not reliably be equal unless they have been computed by the same algorithm, and
not always even then. For example

a <- sqrt(2)

a * a == 2

[1] FALSE

a * a - 2
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[1] 4.441e-16

all.equal(a * a, 2)

[1] TRUE

The command all.equal() compares two objects using a numeric tolerance of

Machine double.eps0.5. For more information, see David Goldberg, What Every

Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg, 1991).

To quote from The Elements of Programming Style by Kernighan and Plauger: “10.0

times 0.1 is hardly ever 1.0” (Kernighan and Plauger, 1978).



B Reproducible Research

The R packages Sweave Leisch (2002) and Knitr (Xie, 2013) are tools that allow

embedding R code for complete data analyses in latex documents. The purpose is

to create dynamic reports, which can be updated automatically if data or analysis

change. Instead of inserting a prefabricated graph or table into the report, the

master document contains the R code necessary to obtain it. All data analysis

output (tables, graphs, tests, etc.) is created and inserted into the final latex

document. The report can be automatically updated if data, analysis, or format

change, which allows for truly reproducible research.
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http://www.statistik.lmu.de/~leisch/Sweave
http://yihui.name/knitr


C LATEX

LATEX (Lamport, 1994) has learning curve but provides man advantages. Besides

the math and text formatting, it provides easy integration of statistical analysis into

a document (a paper, a thesis or a book) with the knitr (Xie, 2013) package. The

is also a package labbook which I have adapted to the economic-labbook package.

++todo Set up economic labbook++ .
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D Probability Distributions

Probability distributions are the basis of many statistical models. The binomial

distribution is a model of the number of successes (from a binary set of success or

failure) in n repetitions.

The Poisson distribution is a model of counts of the occurrance of an event in a

unit of time.

The exponential and gamma distributions are models of time between events;

for example waiting time or failure times.

The normal distribution is used in many situations, and is also used as an

approximation to other distributions.

Standard Probability Distributions

The uniform distribution:

p(x) =
1

b− a
, x ∈ (0,1) . (D.0.1)

The exponential distribution:

p(x) = we−wx
, x ∈ (0,∞), w > 0 . (D.0.2)

The gamma distribution:

p(x) =
c(cx)

w−1e−cx

Γ (w)
, x ∈ (0,∞), w > 0, (D.0.3)

where

Γ (w) =

∫

I

y
w−1e−y dy . (D.0.4)
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The beta distribution:

p(x) =
Γ (a + b)

Γ (a)Γ (b)
x
a−1

(1 − x)
b−1
, x ∈ (0,1), a > 0, b > 0 . (D.0.5)

If X ∼ Gamma(α,θ) and Y ∼ Gamma(β,θ), and X and Y are independent, then:

X/(X +Y ) ∼ Beta(α, β) .

A simulation in R:

Temp R code display

> m <- 2^16

> x <- rgamma(m,1,1)

> y <- rgamma(m,1,1)

> a <- x/(x+y)

> quantile(a,1:9/10)

The Cauchy distribution :

p(x) =
1

π
(

1 + x
2
) , x ∈ (−∞,∞) . (D.0.6)

The log-normal distribution:

p(x) =
1

σx
√

2π
exp { − 1

2
(
ln x − w
σ

)

2

}, x ∈ (0,∞) . (D.0.7)

The normal distribution:

p(x) =

(

σ√
2π

)−1

exp { − 1

2

(

x − u

σ

)2

}, x ∈ (−∞,∞) . (D.0.8)

The Laplace distribution:

p(x) =
β

2
e−β |x |, x ∈ (−∞,∞) . (D.0.9)

The Pareto distribution:

p(x) =
β − 1

c

(

c

x

)β

, x ∈ I = (c,∞), c > 0 . (D.0.10)

The Weibull distribution:

p(x) = k x
k−1e−x

k

x > 0 . (D.0.11)
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D.1 Special Distributions

Normal

The distribution has a thin tail, see Appendix Appendix E for some properties of

the normal distribution.

Student T Distribution

As the degrees of freedom increases the Student t-distribution appoaches a normal

distribution ++todo is this true++ .

Cauchy

A Student t-distribution with one degree of freedom is a Cauchy distribution. It is

well known distribution with thick tails.

The Cauchy distribution does not have a mean. A sample from the Cauchy dis-

tribution does have mean. As the sample size increases the mean does not converge

but bounces around (it is erratic), and the sample median behaves well ++todo

whatever that means++ .

The Cauchy distribution does have a median, and the sample median converges

to that median.

The probability distribution of the sample median for a sample of n = 2k + 1

from a Cauchy distribution is

f (x) =
n!

(k!)2

(

1

4
− 1

π
2

arctan2
x

)k
1

π(1 + x
2
)
, for k = 1, . . . . (D.1.1)

The variance is

Var x =
2(n!)

(k!)2
π
n

∫ π/2

0
(π − y)

k
y
k cot2

y dy , (D.1.2)

and is finite for k ≥ 2.1

Remark D-1

When a probability distribution has both a mean and a variance, the

variance of the sample mean is inversely proportional to the number of

samples. This helps the sample mean converge, but does not quarantee

that it will converge. �

++todo continuous or other requirements++

1David (1981, page 50) The book credits rider.1999 P. R. Rider, JASA 55: 322–323.



E Normal Distribution

E.1 Normal Properties

One

If a joint probability density satisfies independence and spericity, then it is a normal

distribution. Define:

Independence For x ∈ ℜ and n > 1, if the joint probability density fn with

marginal probability densities f1 satisfies

fn (x1, x2, . . . , xn ) = f1(x1) f1(x2) · · · f1(xn ) (E.1.1)

, then it is independent.

Spericity If the joint probability density satisfies

fn (x1, x2, . . . , xn ) = gn

(

Σ
n
i=1x

2
i

)

(E.1.2)

, then it is spherical.

Normal distribution The univariate normal distribution is

f1(xi ) =
1√

2π σ
exp

(

− 1

2σ2
x

2
i

)

(E.1.3)

Theorem E.1.4 (Herschel-Maxwell) Let Z ∈ ℜn be a random vector for which

• (i) projections into orthogonal subspaces are independent and

200
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• (ii) the distribution of Z depends only on the length ‖Z ‖.

, then Z is normally distributed.

Proof E.1.5 Herschel-Maxwell Spherical symmetry tells you that f1(x) is a func-

tion of x
2, i.e.,

f1(x) = g1(x
2
). (E.1.6)

Independence plus spherical symmetry implies

g1(u)g1(0) = g2(u) and g1(u)g1(v) = g2(u + v) ∝ g1(u + v) (E.1.7)

Therefore, rescaling g1 into h1 so (E.1.7) is an equality, we derive the identity

h1(u)h1(v) = h1(u + v) (E.1.8)

for which the only solution is of the form

h1(u) = exp (αu) , α ∈ ℜ . (E.1.9)

Thus,

f1(x) =
1

√

2πσ2
exp *

,
−x

2

2σ2
+
- , σ ∈ ℜ

+
, (E.1.10)

since only negative factors α lead to densities.

The above from George Cobb (Cobb, 2011, page 54).

++todo Typo: u + 1 instead of u + v++

Two

A standardized Gaussian distribution on ℜ can be defined by its density:

1√
2π

e−x
2/2 (E.1.11)

Lukacs (Lukacs, 1942) shows that the sampling distributions of the sample mean

and variance are only independent for the normal distribution. Independence of the

sample mean and variance characterizes the normal distribution. Feller (See also

Feller, 1966, page 86) cites R. C. Geary (geary ). ++Find ref R. C. Geary++

If X and Y are i. i.d. with finite variance with X + Y and X − Y independent,

then X and Y are normal. So independence of mean and standard deviation follows

from independence of X +Y and X −Y , but not the other way around.

The continuous distribution with fixed variance which maximizes differential

entropy is the Gaussian distribution.

A. M. Mathai & G. Perderzoli(Mathai and Perderzoli, 1997) prove:
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Theorem E.1.12 Let X1, . . . ,Xn be independent random variables. Then
∑n

i=1 ai xi
and

∑n
i=1 bi xi are independent, where aibi , 0, if and only if Xi are normally dis-

tributed.

There must be a condition such as ∠a,b〉 = 0 missing in the theorem statement

above. For example if n = 2, ai = bi = 1, X1 + X2, and X1 + X2 are not independent.

++todo Check for inner product symbols.++

If A = a1 ⊕ a2 ⊕ · · · ⊕ am, for m ≤ n, where ai are row vectors of dimension ni
such that

∑m
i=1 ni = n and ⊕ denotes the direct sum, then the random vector Y has

independent coordinates.

This is not hard to see since Y1 is measurable with respect to σ(X1, . . . ,Xn1
), Y2

is measurable with respect to σ(Xn1+1, . . . ,Xn1+n2
), etc., and these σ -algebras are

independent since the Xi are independent by definition.

This result still holds if we consider matrices that are column permutations of

the matrix A described above.

For a normal distribution, if AA
⊤
= D for some diagonal matrix D, then the

coordinates of Y are independent. This is easily checked with the moment-generating

function.

Note: Suppose X1 and X2 are i. i.d. with finite variance. If X1 + X2 is indepen-

dent of X1 − X2, then X1 and X2 are normal distributed random variables.

The result due to Bernstein (Bernstein, 1941). A proof can be found in Feller

or Bryc (2005, chapter 5, page 61). It was generalized by Lukacs and King (1954).

In the case where A cannot be written as a direct sum of row vectors, there is a

distribution for X such that Y does not have independent coordinates.

We have:

Theorem E.1.13 (Lukacs and King (Lukacs and King, 1954)) Let X1,X2, . . . ,Xn

be n independently (but not necessarily identically) distributed random variables with

variances σ2
i , and assume that the nth moment of each Xi (i = 1,2, . . . ,n) exists. The

necessary and sufficient conditions for the existence of two statistically independent

linear forms Y1 =
∑n

i=1 aiXi and Y2 =
∑n

i=1 biXi are:

• Each random variable which has a nonzero coefficient in both forms is nor-

mally distributed, and

•
∑n

i=1 aibiσ
2
i = 0 .

where σ2
s is the variance of Xs (s = 1,2, . . . ,n).

Let η and xi be two independent random variables with a common symmetric

distribution such that

Pr

(�����
xi + η√

2

����� ≥ t

)

≤ Pr(‖xi ‖ ≥ t) . (E.1.14)
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, then these random variables are Gaussian. This is the Bobkov-Houdré Theo-

rem (Kwapien, Pycia, and Schachermayer, 1996).

Stein’s Lemma provides a very useful characterization. Z is standard Gaussian

if and only if E [ f
′
(Z )] = E [Z f (Z )] for all absolutely continuous functions f with

E [‖ f
′
(Z )‖] < ∞.

Cantelli Conjecture

The conjecture by Cantelli dates back from 1917:

Theorem E.1.15 If f is a positive function on ℜ and X and Y N (0,1) indepen-

dent random variables such that X + f (X )Y is normal, then f is a constant almost

everywhere.

If non-continuous functions are allowed, then Victor Kleptsyn and Aline Kurtzmann

have a counter example Cantelli (1918) Kleptsyn and Kurtzmann (2012).

Others

Suppose one is estimating a location parameter using i. i.d. data { x1, . . . , xn }. If x̄ is

the maximum likelihood estimator, then the sampling distribution of x̄ is Gaussian.

A non-degenerate infinitely divisible random variable X has a normal distribu-

tion if it satisfies

− lim sup
x→∞

log Pr(|X | > x)

x log(x)
= ∞ . (E.1.16)

This result characterizes the normal distribution in terms of its tail behavior.

A short proof is: If X is standard normal, then

x Pr(X > x)/ϕ(x) → 1 as x → ∞ ,

so log Pr(X > x) − log ϕ(x) + log x → 0 .

But 2 log ϕ(x) ∼ −x
2

and so the result follows.

Computing the Normal

To compute the normal (or error function) Cody (see 1969).



F Proofs

F.1 Proof of KS Distribution Free

The Kolmogorov-Smirnov statistic (over the class of distributions of continuous

random variables) is distribution-free for a finite sample. That is, the distribution

of the test statistic does not depend on the underlying distribution of the data

(under the null hypothesis).

Proof F.1.1 Let F and G be continuous distributions, and Xi ∼ F and Yi ∼ G be

independent i. i.d. sequences of size n. Then

nF̂n (x) = |{ i : Xi ≤ x }| = |{ i : F (Xi ) ≤ F (x) }| ,
and

nĜn (x) = |{ i : Yi ≤ x }| = |{ i : G(Yi ) ≤ G(x) }| .

Under the null hypothesis F = G, sup |F̂n (x) − Ĝn (x) | is equal in distribution to the

same statistic obtained from two independent U (0, 1) samples of size n.

Under the null hypothesis, the asymptotic distribution of the two-sample Kolmogorov-

Smirnov statistic is the Kolmogorov distribution, which has CDF

Pr(K ≤ x) =

√
2π

x

∞
∑

i=1

e
−(2i−1)

2
π

2/(8x2
) .

The p − values can be calculated from this CDF.
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Glossary

Akaike Information Criterion This is.. 156, 157, 207

ANalysis Of COVAriance This is.. 126, 207

ANalysis Of VAriance This is.. 53, 126–129, 148, 149, 207

Asymptotic Relative Efficiency Compare efficiency of estimators.. 87, 207

Bayesian Information Criterion This is.. 156, 157, 207

Confirmatory Data Analysis This is.. 52, 53, 207

Cumulative Distribution Function A probability function todo.. 64, 76, 120, 186, 207

Empirical Cumulative Distribution Function Given N ordered data points Y1,Y2, . . . ,Yn the

ECDF is defined as EN = n(i)/N , where n(i) is

the number of points less than Yi . This is a step

function that increases by 1/N at the value of each

ordered data point.. 118, 137, 205, 207

Empirical Distribution Function This is.. 112, 118, 207

Experimental Economics The variation of experimental design used in eco-

nomics.. 3, 26, 27, 38, 150, 153, 207

Exploratory Data Analysis This is.. 52, 53, 101, 163, 207

goodness-of-fit This is.. 119, 207

Kolmogorov-Smirnov this 2.. 117–119, 121, 134, 207

Maximum Likelihood This is.. 159, 207

maximum likelihood estimator This is.. 55, 133, 207
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GLOSSARY 206

power 1 − β. 115

Restricted Maximum Likelihood This is.. 159, 207



Acronyms

AIC Akaike Information Criterion. 156, 157

ANCOVA ANalysis Of COVAriance. 126

ANOVA ANalysis Of VAriance. 53, 126–129, 148, 149

ARE Asymptotic Relative Efficiency. 87

BIC Bayesian Information Criterion. 156, 157

CDA Confirmatory Data Analysis. 52, 53

CDF Cumulative Distribution Function. 64, 76, 120, 186

CE Competitive Equilibrium. 29, 125

ECDF Empirical Cumulative Distribution Function. 118,

137, 205

EDA Exploratory Data Analysis. 52, 53, 101, 163

EDF Empirical Distribution Function. 112, 118

EE Experimental Economics. 3, 26, 27, 38, 150, 153

GEE Generalized Estimation Equations. 145

GLM General Linear Model. 185

GOF goodness-of-fit. 119

KS Kolmogorov-Smirnov. 117–119, 121, 134

ML Maximum Likelihood. 159

MLE maximum likelihood estimator. 55, 133

REML Restricted Maximum Likelihood. 159
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ACRONYMS 208

RSM Response Surface Methodology. 3

WMW Wilcoxon-Mann-Whitney. 99, 109, 110, 115, 134
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